Accounting for temporal variability in productivity of Pacific halibut

Allan Hicks
Piera Carpi, Ian Stewart

Pacific Halibut Workshop
PICES Annual Meeting 2019
Pacific halibut (*Hippoglossus stenolepis*)

- Range from CA through BC, AK, and the western Pacific Ocean
- Live to greater than 30 years
- Grow to greater than 400 pounds
- Highly variable weight-at-age across years
- Have been observed to migrate very long distances
Pacific halibut fishing mortality

Discard mortality (nontargeted/nondirected)
Subsistence
Recreational
Discard mortality (targeted/directed)
Commercial landings

Mortality (Thousand mt net)
Mortality (Million lb net)

Pacific halibut weight-at-age
Recruitment Regimes

- Average age-0 recruitment is linked to environmental conditions
 - Pacific Decadal Oscillation (PDO)
 - ~1.5 to 3.2 times greater in good conditions
Productivity of Pacific halibut
Biological reference points

• Values that are useful for managing fish stocks
 – SB_0: Unfished spawning biomass
 – MSY: Maximum Sustainable Yield
 – RSB: Relative spawning biomass (relative to SB_0)
 – SPR: Spawning Potential Ratio

• These may change with changes in productivity
Equilibrium yield curve

- With no fishing
 - Yield is zero
 - Unfished biomass

- With extremely high F
 - Yield is zero
 - No biomass
Equilibrium yield curve

- **MSY**
 - Maximum Sustainable Yield
 - The maximum of the yield curve

- **F_{MSY}**
 - The fishing mortality rate that would result in MSY

- **Productivity regimes**
 - Change the shape of the equilibrium yield curve
Dynamic Reference Points

Purpose:
• to investigate variability in reference points given
 – changes in productivity and selectivity
 – different types of uncertainty

Reference points considered:
• SB0: Unfished biomass given the current regime
• MSY: Maximum Sustainable Yield
• RSB_{MSY}: Relative spawning biomass at MSY
• SPR_{MSY}: Spawning Potential Ratio at MSY
Use of models for fisheries management

<table>
<thead>
<tr>
<th>Conceptual Understanding</th>
<th>Strategic Planning</th>
<th>Tactical Decisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broad understanding</td>
<td>Long-term</td>
<td>Short-term</td>
</tr>
<tr>
<td>Forms underlying context for management planning</td>
<td>Policy goals</td>
<td>Operational objectives</td>
</tr>
<tr>
<td>Research</td>
<td>MSE</td>
<td>Harvest control rule</td>
</tr>
<tr>
<td>Investigate changes in productivity</td>
<td>Management procedures robust to temporal change</td>
<td>Past trends in productivity and short-term advice</td>
</tr>
</tbody>
</table>

FAO 2008. Technical guidelines for responsible fisheries. 4, Suppl. 2, Add. 1
Dynamic Reference Points

Methodology:
• Conceptual: Equilibrium model
• Tactical: 2018 stock assessment model
• Strategic: Coastwide MSE operating model

Main sources of variability considered:
• Environmental regimes
• Weight at age
• Selectivity
• Steepness
• Natural mortality
Equilibrium model
Results from stock assessment models

[Graphs showing trends in MSY, SSB, RSB_MSY, and SPR_MSY over time]
Results from MSE operating model

- **SB₀** (Mlbs)
 - Low Regime
 - High Regime
 - Simulation Year

- **MSY** (Million lbs)
 - Simulation Year

- **RSB烜**
 - Simulation Year

- **SPR烜**
 - Simulation Year
Conclusions

- SB_0 and MSY vary depending on regime
- RSB_{MSY} and SPR_{MSY} are more stable
 - $RSB_{MSY} \sim 20\text{-}30\%$
 - $SPR_{MSY} \sim 30\text{-}35\%$
Development of a harvest strategy

Management Strategy Evaluation (MSE)

Goals & objectives

- Stakeholders
- Managers

Application

- Implement management procedure

Communication is a key part of every component

Management procedure

- Data
- Estimation model
- Harvest rule

Simulation & Evaluation

- Alternative scenarios
- Performance
- Trade-offs
- Review
INTERNATIONAL PACIFIC HALIBUT COMMISSION