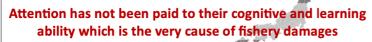
Harbor seals (*Phoca vitulina*) discriminate in 3D objects : Effects of Brightness and Shape

Monica Ogawa¹, Ayako Momoi², Toshihiko Kushihiki² and Yoko Mitani³


¹Graduate School of Environmental Science, Hokkaido University, Hakodate, Japan ²Asamushi Aquarium, Aomori, Japan ³Field Science Center for Northern Biosphere, Hokkaido University, Hakodate, Japan

New perspective in mitigating seal-fishery conflicts

Background

nica_santa@eis.hokudai.ac.jp

- Harbor seals are the only pinnipeds stay in Japan throughout the year and Cape Erimo is the biggest haul-out site
- Fishery damage in the salmon set net has been serious problem
- To mitigate damage, many efforts have been done but the effect was transitory due to their high learning ability

Objectives

It is the priority to clarify their visual cognitive

Previous study revealed that seals are...

- color-blind (Griebel & Peichl 2003)
- but can discriminate color by using brightness difference (Scholtyseek et al, 2014)
- can discriminate complex shape

But actual mechanism of how they discriminate in objects is unknown

Materials and Methods

Hypothesis

They discriminate objects by using...

- 1. Shape difference
- 2. Brightness difference
- 3. Shape and Brightness difference

1. Training

2. Pre-test

Objective: train subjects to learn S+ object

 Subjects were trained to choose S+ (dark-gray circle)

• feed them to reinforce when they choose S+

Objective: check subjects learned S+ object

Pre-test continued until each individual

achieved 80% or better correct choices in

3. Test

Objective: find how they discriminate in objects

Shape different probe

Cape Erimo

Each pair is different in shape and test the ability of seals to discriminate in objects on basis of shape

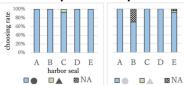
Brightness different probe

Each pair is different in brightness and test the ability of seals to discriminate in objects on basis of brightness

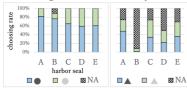
Shape-Brightness different probe

Two objects are different in both shape and brightness

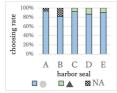
- feed and reinforce only when they choose S+ objects
- · When they did not make choice within 5 seconds, we count as "NA"
- compare choosing rate of each objects


Probe Type	Object pair
Shape different probe	
Brightness different probe	
Shape-Brightness different probe	

Results


3 successive sessions

Shape different probe


There is a significant tendency to choose object with the same shape as S+ (circle) regardless of its brightness

Brightness different probe

There was no tendency to choose object with the same brightness as S+

Shape-Brightness different probe

They chose object with same shape as S+ (circle) rather than same brightness (dark)

Conclusion

Seals rely more on **SHAPE** than brightness

Why??

Light is limited and reliability of brightness difference is low under the sea, while shape is not subjected by light and universal

The knowledge can contribute to improve countermeasure for fishery damages.

Acknowledgement

Special thanks to Asamushi Aquarium for providing opportunity to conduct experiment and for supporting our study