Information requirements for assessing trophic impacts of fisheries on ecosystems

Steve Martell
Sean Cox
And a cameo appearance by George Watters

1 Center for Limnology, 680 North Park Street, Madison, WI, 53706, U.S.A.
2 School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6
Limitations of Single Species Models

Single species models fail to capture changes in vital rates associated with changes in trophic structure.

- Possible to estimate changes in Z from catch-age data (i.e. $Z=-\ln(N_{t+1}/N_t)$)
- Cannot partition Z into components (i.e. $Z=M_1+M_2+M_3+\ldots+F$)

WCVI Pink Shrimp

Instantaneous mortality rate

- Dogfish
- Adult Pacific Cod
- Juv Pacific Cod
- Lingcod
- Juv Lingcod
- Shrimp F
- Shrimp Z from SSM
Ecosystem Models

Development of Ecosystem models is an essential step for moving towards ecosystem based management.

- Explicit accounting of direct and indirect ecological interactions.
- Examine tradeoffs associated with fisheries.

But! How can we be certain ecosystem models are making reasonable predictions?

- We need methods for model validation.
 - Confronting models with data.
- Also need methods for comparing alternative models.
 - Comparing single species approaches with ecosystem approaches.
Ecopath with Ecosim

ECOPATH
- Initialization routine for Ecosim (Walters).

ECOSIM
- A set of routines for predicting:
 - Changes in biomass (B_i).
 - Changes in consumption (Q_{ij}).

ECOSPACE
- A spatially explicit version of Ecosim.
 - Used to evaluate spatially explicit management options such as closed areas, or effects of seasonal migrations.
Leading parameter setup

Inputs:
- biomass
- P/B
- Q/B
- catch
- diet

ECOPATH

Inputs:
- Fishing mortality
- Fishing effort
- Historical forcing data
- Mediation relationships

ECOSIM

Calculate derived variables

Inputs:
- V_{ij} (min N)
- Handling time (1)
- Feeding time parameters (2)
- Predator effect parameters (2)
- S-R parameters (4-5)
The guts of Ecosim

Change in biomass predicted using:

\[
\frac{dB_i}{dt} = g_i \sum_j Q_{ji} - \sum_j Q_{ij} - (M_i + F_i)B_i
\]

Consumption \((Q_{ij})\) based on foraging arena concepts.

\[
Q_{ij}(B_i, B_j) = \frac{a_{ij} v_{ij} B_i B_j}{2v_{ij} + a_{ij} B_j}
\]
Consumption

Representing limited prey vulnerability in Ecosim

- **B** = Total prey biomass;
- **V** = Vulnerable prey biomass;
- **v** = Behavioral exchange rate;
- **P** = Total predator biomass;
- **a** = Predator rate of search.

Fast equilibration between **B-V** and **V** implies

\[V = \frac{vB}{2v + aP} \]
Consumption equation

Given estimate of v_{ij} and inputs $(B_i, B_j, Q_{Bj}, D_{cij})$, calculate a_{ij}

$$Q_{ij} = \frac{a_{ij} v_{ij} B_i B_j}{2v_{ij} + a_{ij} B_j}$$

solve for a_{ij}

$$a_{ij} = \frac{-2Q_{ij} v_{ij}}{B_j (Q_{ij} - v_{ij} B_i)}$$

Unknown parameter for each trophic interaction link is v_{ij}
Main Criticisms of the approach

Reliance on input parameters for estimating derived variables

- Mass-balance constraint limits our ability to estimate leading parameters.
- Although convenient, consumption equations are sensitive to diet inputs and user specified exchange rates (v_{ij}’s).
- No real way, yet, to validate functional responses.
Questions?

Are typical fisheries data sufficient for estimating parameters in Ecosim, specifically:

- are relative abundance data sufficient for estimating vulnerabilities (v_{ij})?
- again, are these data sufficient for estimating both v_{ij} and environmental variation (a mixed error model)?
Methods

Steve:
- Create artificial ecosystems using Ecosim.
- Use Ecosim to generate time series data with errors and pass them onto George.
 - Data included relative abundance, fishing effort, catches, and total mortality rate estimates

George:
- Received an Ecopath model from Steve and time series data.
- Estimate Ecosim parameters from time series data (Blind).

Steve:
- Compare Georges estimates with true states, then determine how these policy recommendations would differ from the optimal state.
Data Quality & Observation Errors

Three Replicate Ecosystems, all with the same parameter values, different exploitation histories, and different observation errors. No process errors (primary-productivity anomalies).

- All vulnerabilities = 0.3, except Epipelagics $v = 0.45$, increasing observation errors.

![Graphs showing biomass over simulation year for different CV values](image-url)
Process & Observation Errors

- CV in observation errors = 0.05
- CV in process errors = 0.2 (the oceanographic index is proportional to primary production with some variability).

![Graphs showing OCGY Index and Primary Production over years compared to each other.](image)

![Histogram showing distribution of OCGY Index over years.](image)
Time Series Data (OTM 1.4)

- Relative abundance (incomplete for epi & mesopelagics)
- Catch & Effort-by-gear data
- Total mortality for Apex Predators
Results: Data Quality

Relative differences between true and estimated states
Including PP anomalies: Over fitting!

No Primary Productivity Forcing

Forcing Primary Productivity

Relative differences between true and predicted states
Results: OTM 1.4 (mixed errors)

Well sorry to disappoint you, but George and his wife had a baby and the blind experiment has been put on hold.
Summary from the blind experiment

George had figured out that models 1-3 had increasing observation errors.

Was able to obtain a better fit to model 3 by estimating process errors (over fitting the model).

George estimated a single v_{ij} parameter for all groups, and did not explore the possibility that only one group had a higher vulnerability exchange rate.

- As a consequence, slightly over-estimated v_{ij} parameters for all groups
- Implications: estimates of ecosystem compensation rates increase (i.e. the ecosystem is more resilient to fishing).

Poor George!
Other Things to Try

- Use single species models, or multi species models to aid Ecosystem approaches.
- Conduct more simulation experiments where observations include changes in diet composition over time.

Lingcod Diet

<table>
<thead>
<tr>
<th>Month</th>
<th>Diet Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
</tr>
<tr>
<td>297</td>
<td></td>
</tr>
<tr>
<td>334</td>
<td></td>
</tr>
<tr>
<td>371</td>
<td></td>
</tr>
<tr>
<td>408</td>
<td></td>
</tr>
<tr>
<td>445</td>
<td></td>
</tr>
<tr>
<td>482</td>
<td></td>
</tr>
<tr>
<td>519</td>
<td></td>
</tr>
<tr>
<td>556</td>
<td></td>
</tr>
<tr>
<td>593</td>
<td></td>
</tr>
</tbody>
</table>

- A. Res. Coho
- J. Hake
- Lingcod
- Small Pelagics
- Dogfish Shark
- Eulachon
- J. Herring
- J. Res. Coho
- Predatory Invertebrates
- H. Zool plankton
- A. Hake
- C. Zool plankton
- Demersal Fishes
- A. Herring
Summary & Limitations

Prospects for estimating parameters for the dynamic model look promising, however:

- assumes Ecopath parameters are correct,
- a nasty problem of comparing alternative models (i.e. estimating one overall v_{ij} versus linkage specific v_{ij}’s).

The reliance on the mass-balance for model initialization constrains options for estimating leading parameters.

- It can be done in a rather crude fashion!
 - Random search
 - Trial and error