Approaching Coastal Aquaculture from an Ecosystem Perspective

M. Rawson1, Chen2 C., Ji R.1, Zhu3 M., Wang4 D., C. Yarish5, J. Sullivan1

1Georgia Sea Grant College Program, School of Marine Program, The University of Georgia, Athens, GA 30602-3636 U.S.A.
2University of Massachusetts, Dartmouth, MA 02744-1221
3First Institute of Oceanography, State Oceanic Administration, Qingdao 266003, P.R. China
4Hainan Marine Development, Planning, & Design Research Institute, Haikou, P.R. China
5University of Connecticut, Stamford, CT 06901-2315
OBJECTIVES

- To encourage integrated aquaculture approaches in coastal management
- To illustrate the use of ecosystem modeling to aid coastal management of aquaculture
AQUACULTURE LOCATIONS

- Closed systems – no effluents
- Ponds - effluents
- Semi-enclosed water – Bays (Our focus)
- Offshore systems – 30-50 m
EUTROPHICATION

- Adding nutrients and organic matter
- Eutrophication negative and positive
- Sources –
 - Natural, i.e. Upwelling, Rainfall
 - Human, i.e. Sewage, Stormwater & Agricultural runoff, Fed aquaculture
Aquaculture Types

- Fed aquaculture - fish pens, shrimp ponds
- Extractive aquaculture - scallops and seaweeds
- Adds organic matter, increases bacteria and plankton, uses oxygen
- Decrease plankton numbers & nutrients, respire oxygen/carbon dioxide
Integrating Aquaculture Systems

- Integrating types of aquaculture - POLYCULTURE
- Bay-wide planning through ICM
- Using Ecosystem Models to SIMULATE effects of management decisions
Fed Aquaculture

- Shrimp Ponds
- Fate of Feed
- Nutrients - P, N
- Blooms/Oxygen
- Effluent

Holowitz & Holowitz, 2000
Boyd & Weddig, 1997
Fed Aquaculture

- Fish Pens
- Fate of feed
- Sedimentation
- Oxygen

Sullivan
Extractive Aquaculture

- Seaweeds
- Nutrients
- Clear water
- Respire
Extractive Aquaculture

- Cleaning Fishes
- Plankton feeders - i.e. Paddlefish
- Bottom feeders - i.e. Mullet, Tilapia

Advantage - Extract plankton & nutrients
Disadvantage - waste & respire
Extractive Aquaculture

- Bivalve Mollusca
- Plankton
- Nutrients
- Pollutants
- Respire
Location of Xincun Lagoon

Hai nan Island

Sanya

Xincun Lagoon

South China Sea
Xincun *Kappaphycus sp.* Culture Areas
Fish cage culture area declined because of severely eutrophication of water quality in 1997.
Existing Sources of Pollution

- **Fish cage culture**: 网箱养鱼
 - nearly 5000 tons of organic pollutant annually
 - 每年近5000吨有机污染物

- **Sewage discharging**: 污水排放
 - nearly 400 tons of COD annually
 - 每年近400吨COD

- **River**: 河流
Distribution of DO and Its Influencing factors

DO is low in fish cage culture area

Low DO is the main Eutrophication problem in Xincun Lagoon
Current Level of culture - Low Tide

Oxygen

Distance (Kilometer)

Xincun Town
Qu Gang River
Da Gang Stream
Monkey Island
Wang DR
50% increase in Finfish culture - Low Tide
Jiaozhou Bay
The SPOT Satellite Image
The Local scallop species
(*Chlamys farreri*)
• Shellfish aquaculture areas (gray-filled);
• Selected flux estimation regions (dashed boxes);
• Sections for the model-data comparison (solid lines)
Tidal Mixing
River Discharges
Winds
Heating/Cooling
Precipitation/Evaporation

Fluxes from inter-tidal zone
Nutrients
Phytoplankton
Zooplankton
Shellfish Aquaculture

Conceptual Model
Tidal-cycle averaged surface distributions of temperature, salinity, phytoplankton, and phosphate. (Tide, River Discharge, and A Southeasterly Wind)
Tidal-cycle averaged surface distributions of phytoplankton with the shellfish culture

Shellfish culture density:

- 12 inds./m3
- 24 inds./m3
Benthic Processes

Water Column

Sediment Anaerobic Layer

- DO
- CBOD
- NH₃
- ON
- OP
- OPO₄
- NO₃+NO₂

Phytoplankton Death

Vertical Diffusion

Oxidation

Denitrification