A Comparison of Two Lower Trophic Models for the California Current System

Thomas C. Wainwright
NOAA Fisheries
Newport, Oregon, USA
Introduction

- Interest in zooplankton production as fish food (CCCC goals)
- Focus on California Current System
 - Salmon primary species of concern
 - Focus on links between physics and ecological processes
- Previous work presented at PICES
 - C.A. Brown et al. (2001): NPZ model embedded in 2D physics model
Issues

- Is an NPZ model adequate?
- Do we need a more complex model? Balance conflicting goals:
 - Predictive ability: model that adequately captures production dynamics
 - Analytic ease: model that can be used for estimation, sensitivity analysis, scenario analysis
 - Confidence: measurable parameters, reasonable behavior within range of parameter uncertainty
Issues

- Compare two models
 - NPZ: simple (3-component) N-based model
 - NEMURO: complex (11-component) N + Si model
- Look at ecological summary variables:
 - Biomass variables:
 - Total Dissolved N (Nitr)
 - Total Phytoplankton N (Phyt)
 - Total Zooplankton N (Zoop)
 - Total Detrital N (Detr)
 - Productivity variables:
 - Phytoplankton P/B (PBPhy)
 - Zooplankton P/B (PBZoo)
 - Ecotrophic Efficiency (EE)
NPZ Model

- Several applications to California Current
- Well-known behavior
 - Newberger et al. 2003 (J. Geophys. Res. 108(C3))
NemPort Model

- “NEMURO Ported to Newport Line”
- Based on Kishi et al. 2001 (J. Ocean. 57:499-507) + PICES reports
- Simplifications
 - No temperature dependence
 - Simplified light response
 - Grouped parameters
Parameter Values

- Common parameters based on Wroblewski, Spitz et al. 2003 (J. Geophys. Res. 108(C3))
- Other NEMURO parameters taken from 2002 workshop report
- NemPort grouped parameters:
 - Density dependent mortality rate (M_0)
 - Maximum grazing rate (G_{max})
 - Ivlev constant (λ)
 - Other phytoplankton & zooplankton parameters
Two Physics Models

- **Closed Box**
 - Unrealistic
 - Used for equilibrium, sensitivity analysis

- **Conveyor Belt**
 - Not quite entirely unrealistic
 - Allows comparison with field data
Results

- Closed Box
 - Equilibria
 - Sensitivities

- Conveyor-Belt
 - Cross-shelf patterns
 - Data comparisons
Equilibria: NPZ
Equilibria: NPZ
Equilibria: NemPort
Equilibria: NemPort
Sensitivities

NPZ

NemPort
Cross-shelf patterns

Dissolved N

Phytoplankton N

Zooplankton N

Detritus N
Cross-shelf patterns
Cross-shelf patterns

Dissolved N

Phytoplankton N

Zooplankton N

Detritus N
Data Comparison

Station NH5, 2000

Dissolved N

Phytoplankton

Zooplankton

(Data courtesy of Bill Peterson)
Previous results

C.A. Brown et al. (in prep.)
Future Work

- **Parameter fitting**
 - Focus on the 4 most sensitive parameters
 - Compare with full Newport Line data
 - Repeat for other years

- **Applications**
 - Tie into juvenile salmon growth/survival model
 - Consider herring or anchovy modelling
 - Develop zooplankton production index
Acknowledgments

- Cheryl Brown for problem definition, previous modeling, and teaching me physics
- Bill Peterson, Julie Keister, and Leah Feinberg for data and discussions
- Yvette Spitz for discussions
- U.S. GLOBEC program for funding