A Comparison of Two Lower Trophic Models for the California Current System

Thomas C. Wainwright NOAA Fisheries Newport, Oregon, USA

Introduction

- Interest in zooplankton production as fish food (CCCC goals)
- Focus on California Current System
 - Salmon primary species of concern
 - Focus on links between physics and ecological processes
- Previous work presented at PICES
 - C.A. Brown et al.(2001): NPZ model embedded in 2D physics model
 - T.C. Wainwright (2001): 8-component model, time scales of top-down and bottom-up processes.

CCS Study Region

Issues

- Is an NPZ model adequate?
- Do we need a more complex model? Balance conflicting goals:
 - Predictive ability: model that adequately captures production dynamics
 - Analytic ease: model that can be used for estimation, sensitivity analysis, scenario analysis
 - Confidence: measurable parameters, reasonable behavior within range of parameter uncertainty

Issues

- Compare two models
 - NPZ: simple (3-component) N-based model
 - NEMURO: complex (11-component) N + Si model
- Look at ecological summary variables:
- Biomass variables:
 - Total Dissolved N (Nitr)
 - Total Phytoplankton N (Phyt)
 - Total Zooplankton N (Zoop)
 - Total Detrital N (Detr)

- Productivity variables:
 - Phytoplankton P/B (PBPhy)
 - Zooplankton P/B (PBZoo)
 - Ecotrophic Efficiency (EE)

NPZ Model

- Originated by Wroblewski (1977 J. Mar. Sci.)
- Several applications to California Current
- Well-known behavior
 - Busenberg et al. 1990 (Bull. Math. Biol. 52:677-696)
 - Edwards et. al. 2000 (J. Mar. Res. 58:37-60)
 - Newberger et al. 2003 (J. Geophys. Res. 108(C3))

NemPort Model

- "NEMURO Ported to Newport Line"
- Based on Kishi et al. 2001
 (J. Ocean. 57:499-507) + PICES
 reports
- Simplifications
 - No temperature dependence
 - Simplified light response
 - Grouped parameters

Parameter Values

- Common parameters based on Wroblewski, Spitz et al. 2003 (J. Geophys. Res. 108(C3))
- Other NEMURO parameters taken from 2002 workshop report
- NemPort grouped parameters:
 - Density dependent mortality rate (M₀)
 - Maximum grazing rate (G_{max})
 - Ivlev constant (λ)
 - Other phytoplankton & zooplankton parameters

Two Physics Models

- Closed Box
 - Unrealistic
 - Used for equilibrium, sensitivity analysis

- Conveyor Belt
 - Not quite entirely unrealistic
 - Allows comparison with field data

Results

- Closed Box
 - Equilibria
 - Sensitivities
- Conveyor-Belt
 - Cross-shelf patterns
 - Data comparisons

Equilibria: NPZ

Equilibria: NPZ

Equilibria: NemPort

Equilibria: NemPort

Sensitivities

Cross-shelf patterns

Cross-shelf patterns

Cross-shelf patterns

Data Comparison

Previous results

C.A. Brown et al. (in prep.)

Future Work

Parameter fitting

- Focus on the 4 most sensitive parameters
- Compare with full Newport Line data
- Repeat for other years

Applications

- Tie into juvenile salmon growth/survival model
- Consider herring or anchovy modelling
- Develop zooplankton production index

Acknowledgments

- Cheryl Brown for problem definition, previous modeling, and teaching me physics
- Bill Peterson, Julie Keister, and Leah Feinberg for data and discussions
- Yvette Spitz for discussions
- U.S. GLOBEC program for funding

