Growth and Fecundity of Euphausia pacifica off the Oregon Coast, Compared With Populations Around the North Pacific

Leah R. Feinberg
Jaime Gómez-Gutiérrez
C. Tracy Shaw
William T. Peterson

Introduction to Euphausia pacifica North Pacific Ocean (a) 997 Steven Haddoor (haddlek (b) (everices Ledu)

Purpose:

- 1. Compare vital rates for *E. pacifica* determined from our study of the population off Oregon to those from published studies around the North Pacific
- 2. Compare and discuss vital rates derived from field census data and laboratory experiments
- 3. Provide data for population dynamics modelling within GLOBEC program

Background: Our Current Research

❖Part of Northeast Pacific GLOBEC program

- Biweekly cruises (8+ year time series)
 - •25 mile transect off Newport, Oregon
- Coast-wide Survey cruises
 - •At least 3 times/year, Newport to N. California
- Laboratory Experiments

(at sea and on land, 10.5 °C)

- Growth
- Fecundity
- Development
- Feeding
- Reared animals for age determination using lipofuscin

Outline:

- Growth Rates (Total Length)
- Longevity
- Age at Maturity
- Fecundity
 - Brood size (BS)
 - Egg size
 - Interbrood period (IBP)

Growth measured in 3 ways

Cohort Analysis (Modal Progression)

Repeated sampling of a field population over regular intervals

Instantaneous Growth Rate (IGR)

❖Incubations of individual animals to determine inter-molt period (IMP) and molt increment (mm) in 24 h incubations

Observation of Laboratory Reared Animals

❖Follow growth of animals for extended periods in the laboratory by measuring molts

Growth Rates: Current Study

Cohort Analysis:

Sub-adult (spring/summer)

Sub-adult (winter)

Adult (winter and spring)

Per Day

0.07mm

0.03mm

0.04mm

IGR (averages):

Sub-adult (spring/summer)

Adult (winter)

Adult (spring/summer)

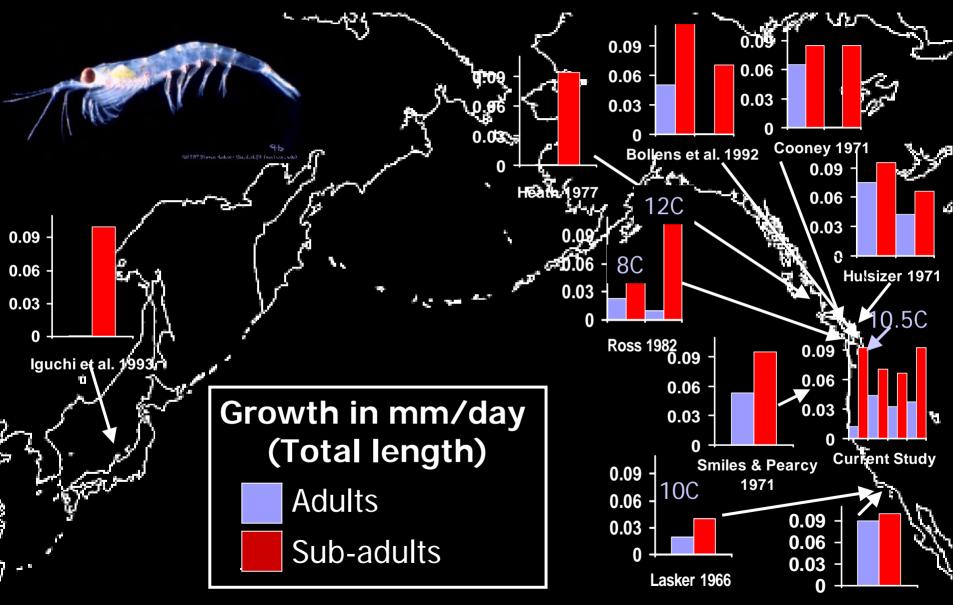
range:

0.07mm

0.03mm

0.04mm

(0 - 0.09mm)


Laboratory Development Experiments 10.5°C:

Egg-Juvenile $(0 \rightarrow 2 \text{ months})$ **0.09mm**

Juvenile \rightarrow 1yr (<~17mm) 0.04mm

1→2yr (>~17mm) **0.01mm**

Growth Rates: Adults vs. Sub-adults

Growth Rates: Winter vs. Spring/Summer 0.09 0.06 0.03 0.09 0.06 **Heath 1977** 0.03 0.09 Brasseur 1984 0.06 0.09 0.06 0.09 0.03 0.09 **Bollens** 0.06 0.09^{-1} 0.06 qaki & Ogishima 1992 0.03 1997 0.03 0.06 0.03 Iguchi et al. 1990 Cooney 1971 Growth in mm/day **Current Study** (Total length) Winter Spring/Summer

Growth Conclusions:

- Growth is greater for sub-adults than adults and greater in spring/summer than in winter.
- All methods give a similar range of growth rates. Cohort analysis often suggests faster growth rates for adults than experimental rates.
- Growth rates may not be regionally specific.
- Shrinkage can occur in any season.

Age at Maturity:

- •1+ for most field studies (4-7 months S. California)
 - maturity often determined indirectly in preserved animals (spermatophores, ovarian maturity)
 - age was determined by size
- •Our work on living animals: Spawn at 9 months
- Smallest spawner in our field incubations ~9 months!

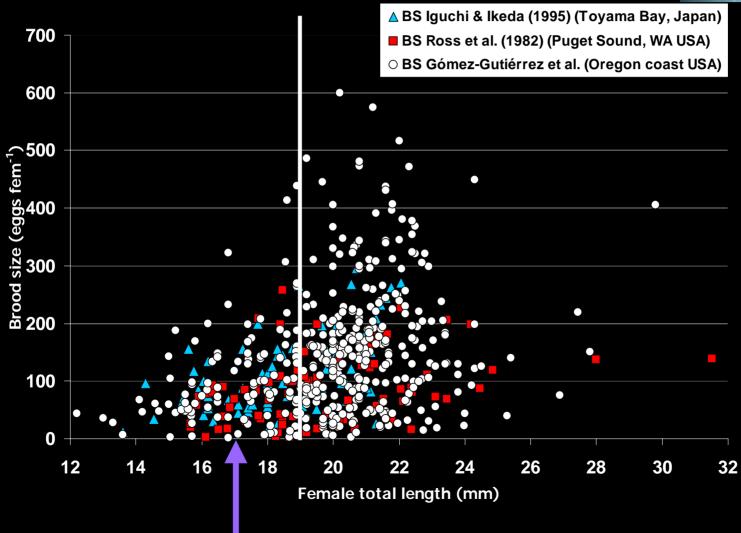
Longevity:

- •NW Pacific, Japan: ~2+
- •S. California: 6-13 months
- •NE Pacific 1 1+

Derived from Cohort Analysis

"Uncle Chester" (maintained in our lab)
 was ~ 32 months old when he died in May 03!

Fecundity Methods:


F = (Spawning Season/IBP)* avg.BS

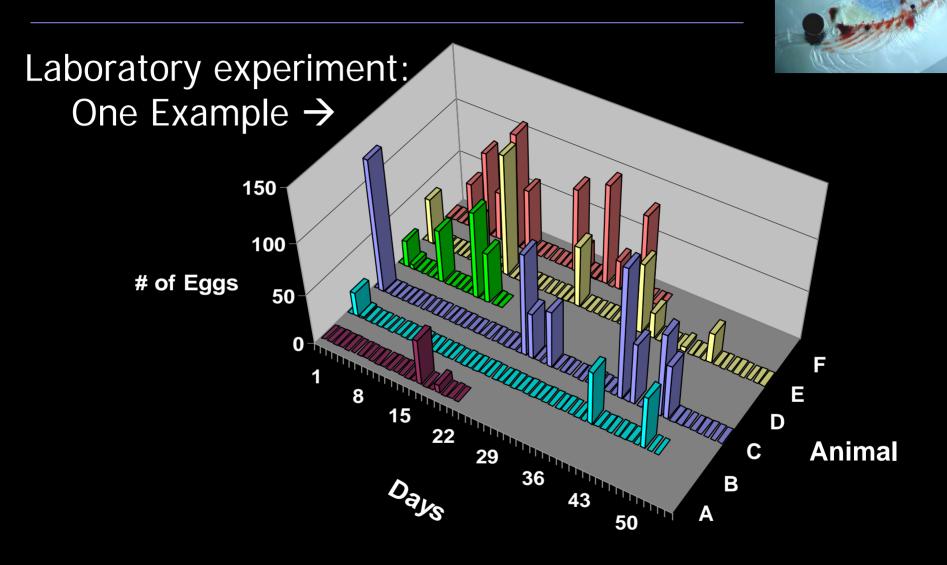
- Regular Sampling of Eggs and Females
 - Length of spawning season, egg and female abundance,
 & proportion of ripe females → IBP (Ross, Current Study)
- Egg Production Incubations
 - •12-48 hour incubations of gravid females (from field) to determine BS (Ross et al., Iguchi & Ikeda, Current Study)
- Fecundity Measured in the Laboratory
 - Daily observations of BS and IBP for laboratory maintained animals, >30 days. (Current Study)
- Enumerate Eggs in Ovaries of Preserved Females
 - •Count and stage oocytes to estimate BS and number of broods (Brinton, Mauchline, Ponomareva)

Brood Size: EP incubations

Egg Weights

Oregon: 3.2 µg carbon Our work

Puget Sound: Ross 1982


S. California: \succ 2.5 µg carbon Lasker 1967

Toyama Bay: J Iguchi & Ikeda 1999

Toyama Bay: 1.5 µg carbon Iguchi & Ikeda 1994

Implications for calculation of daily or annual production

Interbrood Period:

Six small females, 9 months old, raised in the lab from eggs

Experimental IBP (results from 6 long-term experiments)

Oregon: 6.5 ± 1.5 (SE) days, Range: 1-37 days

Santa Barbara: 4.8 ± 0.8 (SE) days, Range: 1-78 days

Barkley Sound: Poor survival, few eggs

Dabob Bay: Poor survival, no eggs

Calculated IBP (based on ovary ripeness of preserved females)

Oregon: 5.9 \pm 1.5 (SE) days, Range: 1-40 days

Washington: 4.2 days (Ross et al.)

Calculation of Fecundity in one spawning season:

Locations	Mean BS (eggs)	Mean IBP (days)	Length of Season (days)	Fecundity (Eggs/female /season)
Oregon, Field	Small:95 Large:161	5.9	244	Small: 3929 Large: 6658
Oregon, Laboratory	Small:66 Large:156	6.5	244	Small: 2478 Large: 5856
S. Barbara Laboratory	140	4.8	365? 180	10,646? 5,250
Puget Sound, Laboratory (Ross)	Small:60 Large:132	4.2	73	Small: 1043 Large: 2294

Fecundity Conclusions:

- Brood sizes are significantly greater for the largest females (>19mm) in Oregon and Japan as compared to Puget Sound in Washington
- Most spawning may occur in animals > 1 year
- * E. pacifica females spawn multiple broods
- Interbrood Period and Brood Size vary greatly.
- Average field estimates and experimentally determined IBPs were quite similar.
 - Range nearly identical

The Year of the Euphausiid

- * Expand our BS and IBP (fecundity) measurements to other populations from the N. Pacific under the same laboratory conditions.
 - Dabob Bay, Gulf of Alaska, Russia, Japan, Korea
- Expand our measurements of development, survival and mortality to other populations.
- ❖ Compare latitudinal differences in *E. pacifica* with several populations of *Thysanoessa spinifera* in the coastal waters of the Eastern Pacific.

Acknowledgements:

Funding:

US GLOBEC

Assistance with

Experiments:

Julie Keister

Mitch Vance

Jesse Lamb

Christina Vann

Rian Hooff

Algal culture:

Ebru Onal Salina Gaskill **Shipboard Support:**

Perry York

Daryl Swenson

Ron Barrel

Technical and Analytical Support:

Cheryl Morgan

Alex De Robertis

Jay Peterson

Robin Ross

Naoki Iguchi

Rodger Harvey

Se-Jong Ju

Steve Nicol