Diet as a mechanism for seasonal and geographic differences in juvenile pollock condition

Andre Buchheister Matthew T. Wilson

Alaska Fisheries Science Center, NOAA

Significance

- Nutritional stress faced by young-of-the-year pollock in the winter may have implications on mortality and recruitment.
- Certain geographic locations may provide advantages in fish growth and survival.

Objectives

- Examine seasonal and geographic patterns in diet.
- Relate these patterns to changes in fish condition.

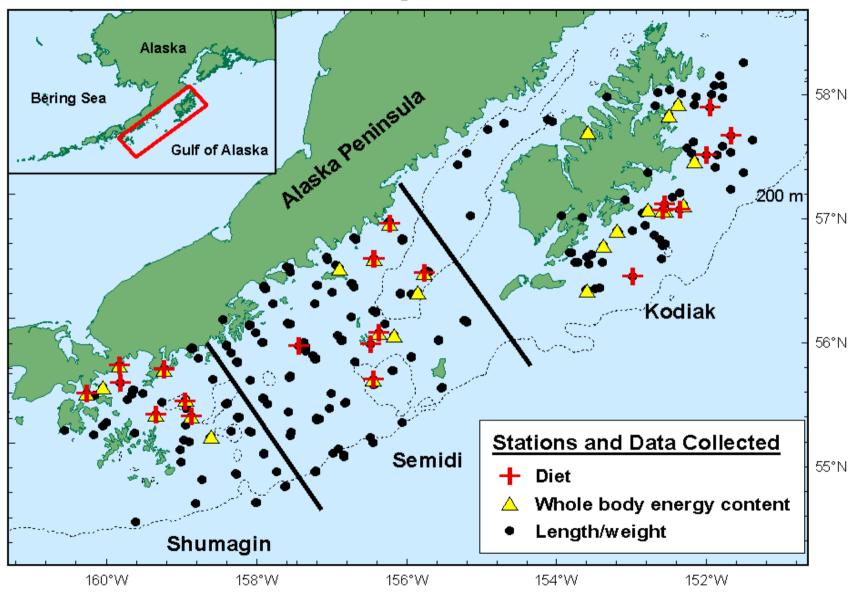
Methods

Sampling

- Four different time periods, tracking the 2000 year-class

• **Aut00** - August, September 2000 (37-109 mm)

• Win01 - February, March 2001 (73-158 mm)


• Sum01 - June, July 2001 (90-190 mm)

• **Aut01** - September 2001 (125-259 mm)

- Mid-water and bottom trawls
- Day and night sampling
- All fish were frozen

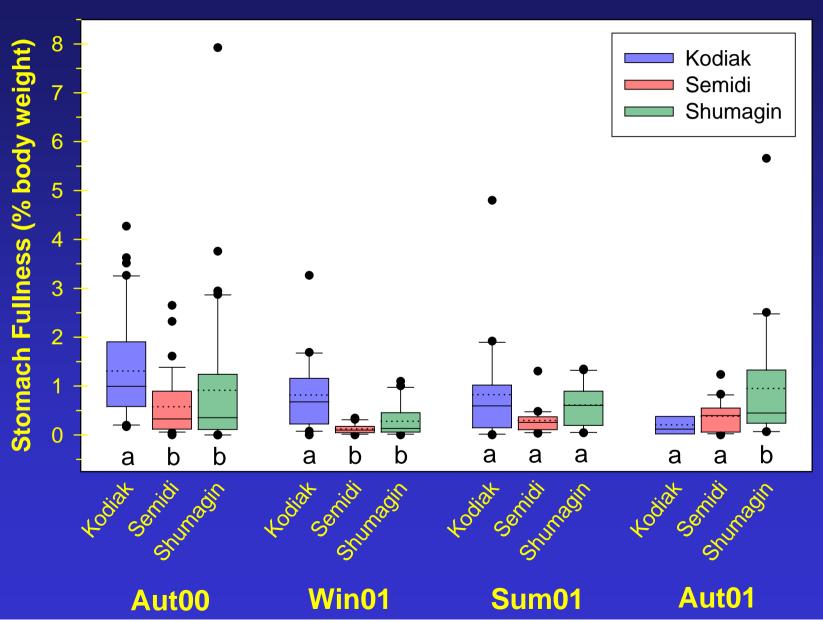
Study Area

Methods

Diet Analysis

- Stomachs excised from thawed fish (n=284)
- Contents sorted to lowest possible taxa
- Prey items enumerated and weighed

Condition Analysis


- Individual lengths and weights measured (n=2199)
- Whole body energy content determined using bomb calorimetry or proximate analysis (n=168)

Results

- Diet
 - Stomach Fullness
 - Major Prey
 - Diet Composition
 - Frequency of Occurrence
- Condition
 - Length-Weight Regressions
 - Whole Body Energy Content

Diet: Stomach Fullness

Diet: Major Prey

Euphausiids

Thysanoessa spp.

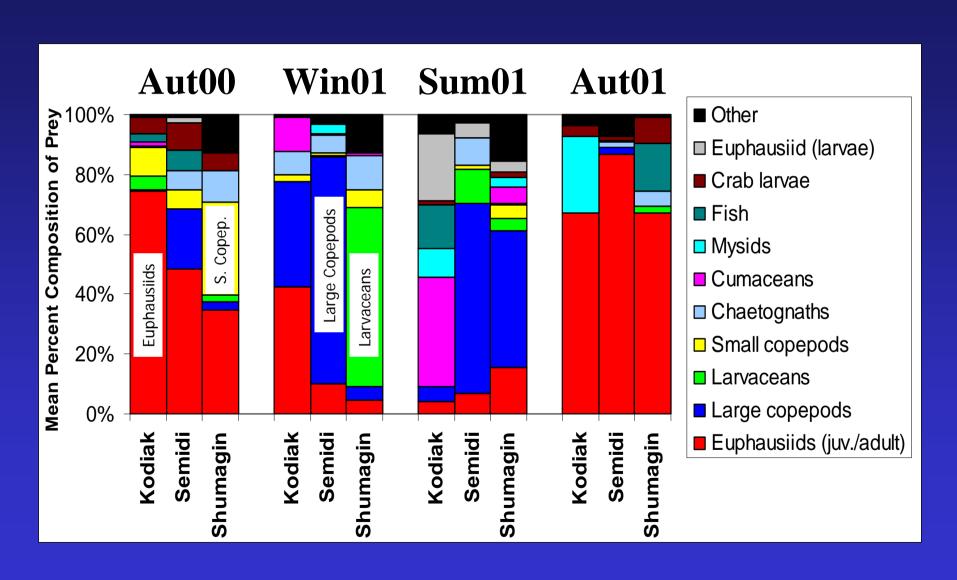
T. inermis & T. spinifera

Calanoid Copepods

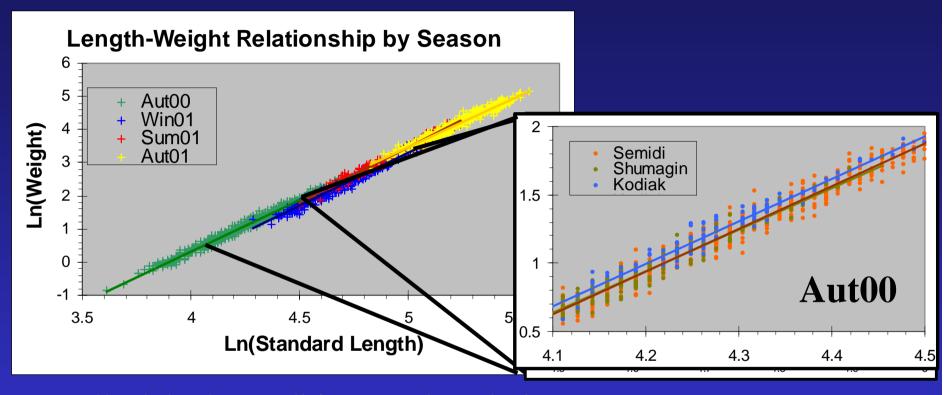
Large (≥ 2 mm)

Small (<2 mm)

Larvaceans

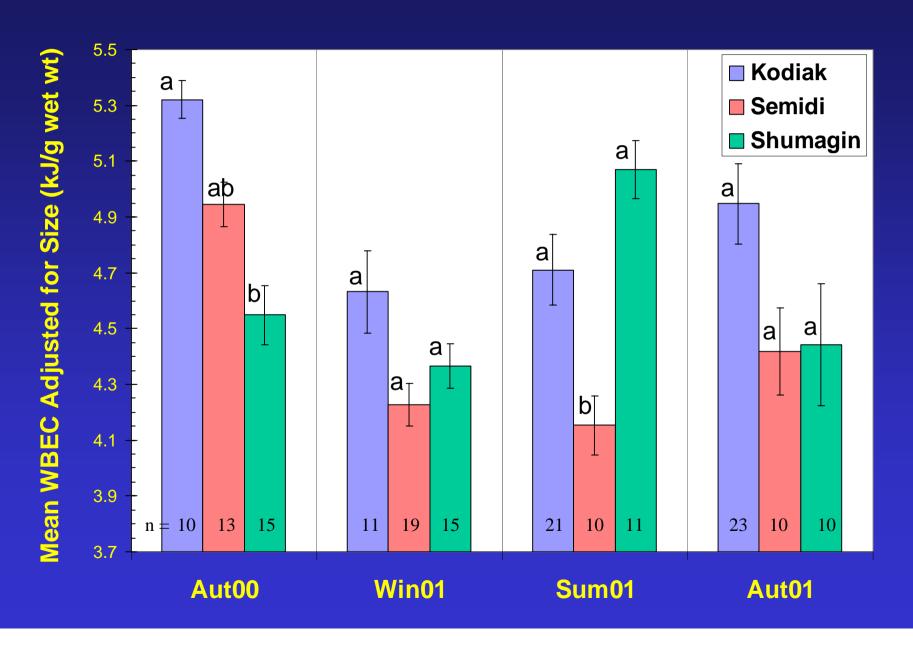

Oikopleura spp.

Diet: Composition of Prey Items (by weight)


Diet: Frequency of Occurrence (%) of Prey

	Aut00			Win01			Sum01			Aut01		
Prey Taxa	Kod	Sem	Shum									
Euphausiids (juv./adult	92.5	67.6	32.	80.0	15.0	5.0	10.0	10.0	20.0	85.7	85.0	80.0
Large copepods (>2mm)	22.	56.8	20.0	65.	95.0	25.0	35.	95.0	85.0	14.	60.0	0.0
Larvaceans	47.5	8.1	27.5	15.0	25.0	95.0	0.0	50.0	85.0	0.0	45.0	20.0
Small copepods (<2mm)	60.0	51.4	62.5	30.0	35.0	50.0	30.0	20.0	75.0	14.3	5.0	15.0
Chaetognaths	2.5	16.2	15.0	35.0	25.0	20.0	0.0	15.0	15.0	0.0	10.0	10.0
Cumaceans	10.0	0.0	0.0	50.0	5.0	10.0	45.0	0.0	20.0	0.0	0.0	0.0
Mysids	0.0	0.0	0.0	0.0	5.0	5.0	15.0	0.0	10.0	28.6	10.0	0.0
Fish	7.5	13.5	0.0	0.0	0.0	0.0	15.0	0.0	0.0	0.0	10.0	15.0
Crab larvae	25.0	18.9	12.5	5.0	0.0	0.0	45.0	0.0	45.0	14.3	30.0	45.0
Euphausiids (larvae)	10.0	24.3	0.0	0.0	0.0	0.0	40.0	5.0	30.0	0.0	0.0	0.0
Other	50.0	18.9	27.5	35.0	25.0	60.0	85.0	25.0	65.0	42.9	75.0	65.0
Unidentifiable	22.5	27.0	20.0	10.0	0.0	0.0	30.0	20.0	50.0	0.0	10.0	20.0
Empty	0.0	2.7	10.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	5.0	0.0
n	40	37	40	20	20	20	20	20	20	7	20	20

Results


- Diet
 - Stomach Fullness
 - Major Prey
 - Diet Composition
 - Frequency of Occurrence
- Condition
 - Length-Weight Regressions
 - Whole Body Energy Content

Condition: Length-Weight Relationship

- Pollock body condition was low during winter in each region (ANCOVA; P<0.001).
- Fish from the Kodiak region were more robust than other regions in Autumn (2000) and Winter (2001) (ANCOVA; P<0.05).

Condition: Whole Body Energy Content

Conclusions

- Nutritional "stress" in wintertime
 - Stomach fullness decreases.
 - Pollock diets shift away from euphausiids.
 - Diet may be contributing to low fish condition in winter.
- Geographic variation in nutritional stress
 - Kodiak fish benefit from higher stomach fullness and more energy-rich prey.
 - Better diet near Kodiak may be driving higher fish condition.

Acknowledgements

Sampling

- Miller Freeman, Sea Storm, Ocean Harvester, Morning Star, Vesteraalen, Alaska Beauty, and crews
- Chris Wilson, Morgan Busby, Nate Raring, Lyle Britt,
 Mike Guttormsen, Dan Nichol, Bill Flerx, Jay Orr,
 Michael Martin, Paul Von Szalay

Funding

- Stellar Sea Lion Research Initiative, North Pacific
 Research Board, National Marine Fisheries Service
- Special thanks
 - Bob Foy, Dave Beauchamp, Kathy Mier, Susan Picquelle