Predictability of Future Recruitment by Parametric and Non-parametric models : Case study of G. of Alaska walleye pollock.

Yong-Woo Lee^{1*}
Bernard A. Megrey¹
S. Allen Macklin²

National Oceanic and Atmospheric Administration

¹Alaska Fisheries Science Center

² Pacific Marine Environmental Laboratory

*Joint Institute for the Study of the Atmosphere and the Oceans/U. of Washington

Why Forecast Recruitment?

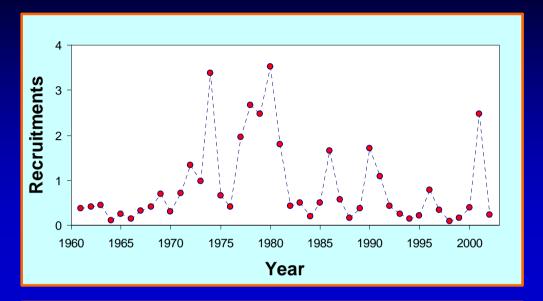
- Understand important bio-physical factors controlling the recruitment processes
- Project future stock dynamics
- Evaluate management scenarios
- Provide reference points for fishery management
- Assist commercial fisheries decision making

Problems in Forecasting

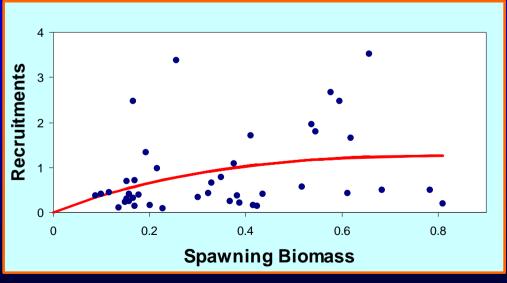
The complexity of the problem often seems beyond the capabilities of traditional statistical analysis paradigms because....

- Bio-physical relationships are inherently nonlinear
- There may be limitations in theoretical development
- Time series are too short
- Lack of degrees of freedom
- Need to partition already short time series into segments representing identified regimes

G. of A. pollock age-2 recruitments (61~02)



42 years



Ricker Model

 $R=a\cdot S\cdot exp(-b\cdot S)$

$$a = 4.17$$

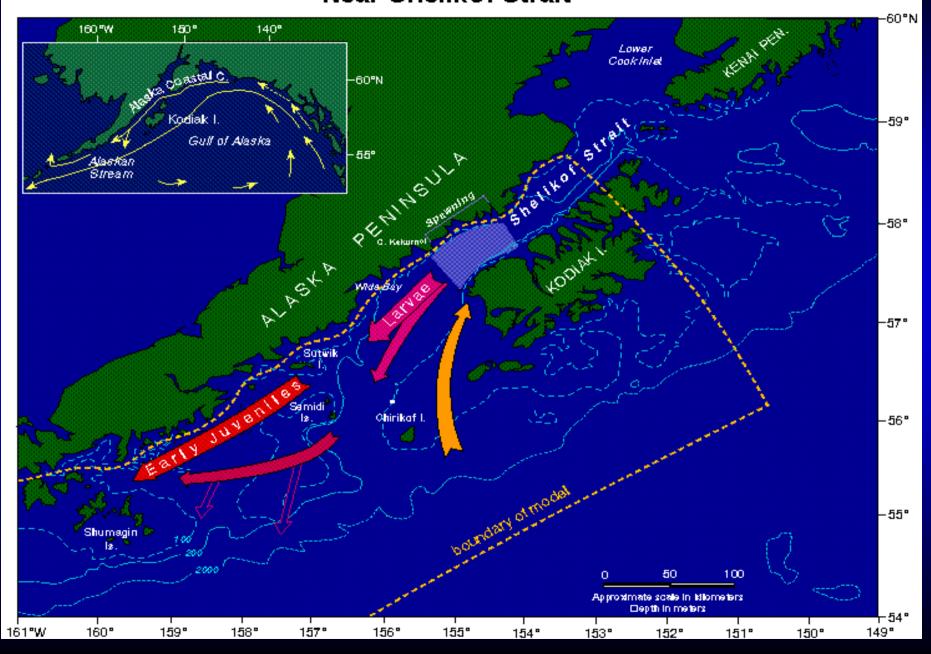
 $b = -1.12$
 $\mathbf{r^2} = \mathbf{10.4} \%$

Objectives

• Construct prediction models, with available environmental variables, to forecast the recruitment of Gulf of Alaska pollock.

- Test and compare several statistical methods to evaluate their ability
 - to identify recruitment-environment relationships
 - to forecast future recruitment

Early Life History of Walleye Pollock *(Theragra Chalcogramma)*Near Shelikof Strait



Examined data

Recruitment Data (response variable)

2-year old pollock, estimated from stock assess. model

Environmental Data (explanatory variables)

Annual SB + Monthly average of 6 variables (NCEP data)

- SST: Sea Surface Temperature
- WMX: Wind Mixing
- RIV: River Discharge
- NEP: North-East Pacific Pressure Index
- PDO: Pacific Decadal Oscillation Index
- SOI: Southern Oscillation Index

Examined data (cont.)

Environmental effects occur in birth year (i.e. no lags)

- recruitment and SB are annual data
- environmental variables are monthly data
- quarterly averages: *pre-*, *during-*, *post-*spawning seasons
- resulted in total of 19 explanatory variables

2 Data Segments Partitioning (1961 ~ 2001, n=41)

- Training segment used for parameter estimation (n=35)
- Forecasting segment used for forecasting accuracy (n=6)

Tested Statistical Tools

- Multiple Linear Regression (MLR)
- Generalized Additive Models (GAM)
- Artificial Neural Network (ANN)

FISHERIES APPLICATIONS

GAM

Cury et al. 1995; Swartzman et al. 1995; Meyers et al. 1995; Jacobsen and MacCall 1995; Daskalov 1999

ANN

Chen and Ware 1999

Comparisons

Multiple Regression

- Conventional (good theoretical background)
- Parametric (statistical assumptions)
- Significance testing (variable selection)

GAMs & ANNs

- Innovative (computer intensive)
- Non-parametric (model-free approach)
- Flexible in function approximation

Constructing Prediction Models

- Generalized Ricker Model $R = \alpha \cdot S \cdot \exp(-\beta_0 S + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_p X_p)$
- 2 possible response variables: log(R), log(R/S)
- 2 strategies in building a prediction model
 - no prior assumption on density dependency
 - prior assumption on density dependency (SB is forced into model selection process)
- 3 statistical methods: MLR, GAM, ANN
- 2 responses \times 2 strategies \times 3 stat-methods = 12 models

Variable Selection Methods in MLR

<u>Forward</u>

- -Start from empty model, F-stat-to-enter
- -Sequentially entered from the most significant terms

Backward

- -Start from full model, F-stat-to-remove.
- -Sequentially removed from the most insignificant terms

Stepwise

-Mixture of *Forward* and *Backward*

Model Selection among All Subsets

Model-fitting Criteria

- Mallows' Cp statistic
- Bayesian Information Criterion (BIC)
- Akaike Information Criterion (AIC)
- * 19 variables => 343 possible combinations of subsets.
- * each model set receives numerical score based on criterion statistic.

MLR

- selected the variables for each model based upon the agreement of different variable selection techniques (forward, backward, stepwise, Cp, AIC, BIC)

GAM

- selected the variables based on AIC

ANN

- used the selected variables in MLR

Selected Best Prediction Models

• MLR with log(R)

no Prior: WMX1 + WMX3

Prior: SB + SST1 + WMX1 + NEP1 + PDO3

• MLR with log(R/S)

no Prior: SST1 + WMX1 + WMX3 + NEP1 + PDO3

Prior: SST1 + WMX1 + WMX3 + NEP1 + PDO3 + SB

• GAM with log(R)

no Prior: *S*(WMX1,df=2) + WMX3

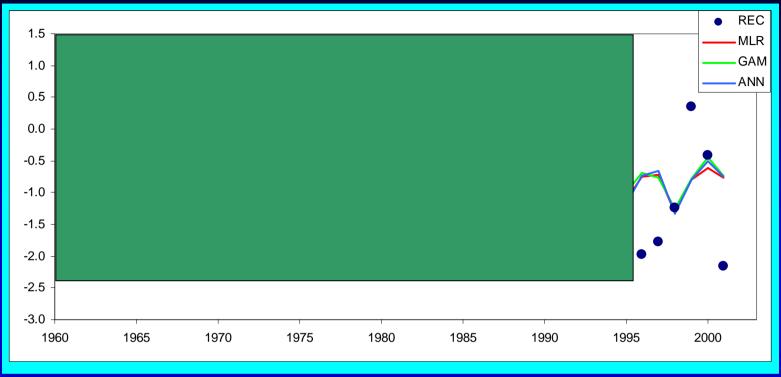
Prior: SB+SST1 + S(WMX1,df=2) + NEP1 + PDO3

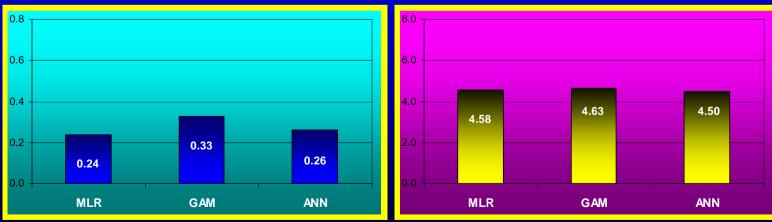
• GAM with log(R/S)

no Prior: *S*(SST1,df=2) + PDO3

Prior: SB + S(WMX3,df=2) + PDO3

Log(R) vs Predictions (no density dependence)

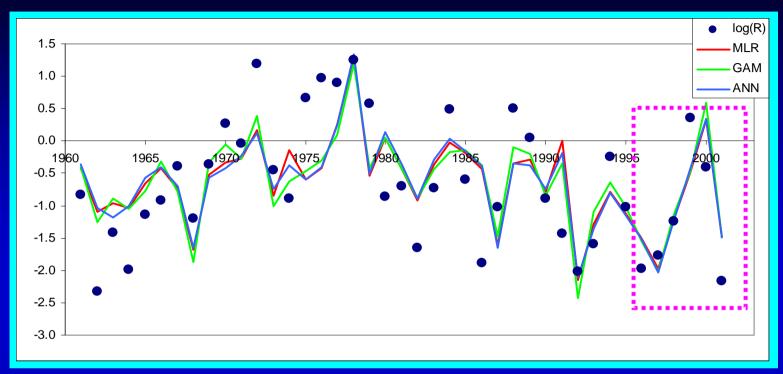


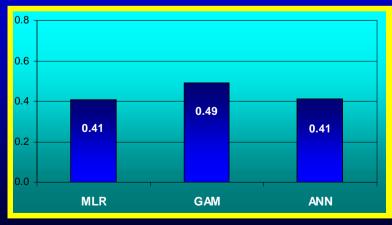


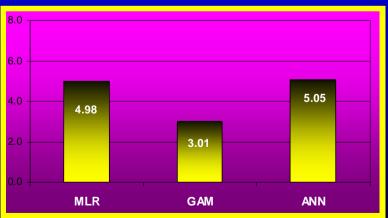
R-square for Training

MSE-1 for Forecasting

Log(R) vs Predictions (density dependence)



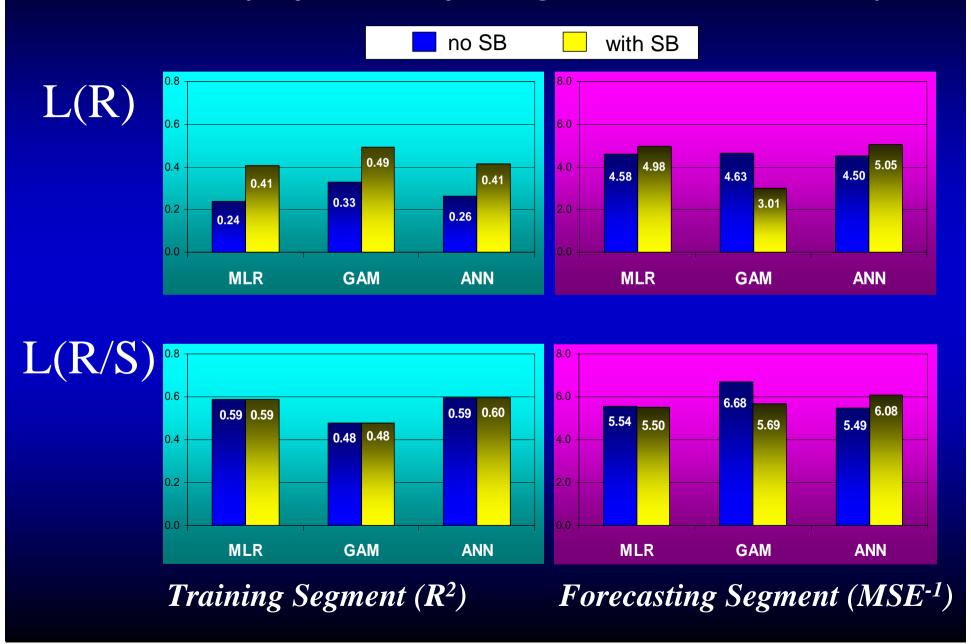




R-square for Training

MSE-1 for Forecasting

Summary of Model-fittings and Predictability



Summary of Findings

- Conditions of pre- and post-spawning seasons seem to play a big role in recruitment success: SST, WMX, NEP, PDO
- Modeling with log(R/S) performs better both for training (goodness-of-fit) and forecasting (predictability)
- There is little evidence that density-dependency is present in the model of log(R/S).
- Non-parametric methods are flexible and show promise for forecasting, thus using GAMs and ANNs together with more traditional methods should enhance analysis and forecasting.

Questions?

?