Chlorophyll Hotspots in the Oligotrophic North Pacific Subtropical Gyre

Cara WILSON

NOAA/NMFS/SWFSC
Pacific Fisheries Environmental Laboratory
Chlorophyll blooms developing in late summer have been observed by satellite ocean color data:

- SeaWiFS: 1997-2004 (and MODIS)
- OCTS: 1996
- CZCS: 1979-1985

- Briefly discuss forcing mechanisms
- Impacts on higher trophic levels?

October 19, 2004 PICES XIII meeting, Honolulu
Acknowledgements

<table>
<thead>
<tr>
<th>Barbara Block</th>
<th>HML, Stanford Univ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Childers</td>
<td>NOAA/NMFS</td>
</tr>
<tr>
<td>Al Coen</td>
<td>NOAA/NMFS</td>
</tr>
<tr>
<td>R. Mike Laurs</td>
<td>NOAA/NMFS</td>
</tr>
</tbody>
</table>

October 19, 2004 PICES XIII meeting, Honolulu
NPSG Chlorophyll Hotspots

Blooms are located between Hawaii and the TZCF, about 10° south of the TZCF

NOV 2000

SeaWiFS Chlorophyll (mg/m³)

October 19, 2004 PICES XIII meeting, Honolulu
NPSG Chlorophyll Hotspots

JUL 1998

AUG 1998

SEP 1998

OCT 1998

SeaWiFS Chlorophyll (mg/m³)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

October 19, 2004 PICES XIII meeting, Honolulu
NPSG Chlorophyll Hotspots

October 19, 2004 PICES XIII meeting, Honolulu
NPSG Chlorophyll Hotspots

October 19, 2004

PICES XIII meeting, Honolulu
NPSG Chlorophyll Hotspots

October 19, 2004 PICES XIII meeting, Honolulu

JUL 2001

AUG 2001

SEP 2001

OCT 2001

SeaWiFS Chlorophyll (mg/m³)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
NPSG Chlorophyll Hotspots

JUL 2003

AUG 2003

SEP 2003

OCT 2003

SeaWiFS Chlorophyll (mg/m³)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

October 19, 2004 PICES XIII meeting, Honolulu
CZCS Blooms

Sept-Dec
1979-1985

Blooms in 4 out of 7 years

• 1981
• 1982
• 1984
• 1985

October 19, 2004 PICES XIII meeting, Honolulu
NPSG Chlorophyll Hotspots

Percentage of time Chlorophyll > 0.15 mg/m³ during Jul.-Oct 1997-2004

N = 105

October 19, 2004 PICES XIII meeting, Honolulu
NPSG Chlorophyll Hotspots

Topography

Region of blooms

Hawaii

October 19, 2004 PICES XIII meeting, Honolulu
NPSG Chlorophyll Hotspots

Seasonal Chlorophyll Cycle
(within study area, south of the TZCF)

October 19, 2004 PICES XIII meeting, Honolulu
At 30°N

Negative ΔSSH and cool SST should accompany upwelling...

and no indication of that...
NPSG Chlorophyll Hotspots

Blooms observed in 10 out of 16 years of satellite ocean color coverage

October 19, 2004 PICES XIII meeting, Honolulu
NPSG Chlorophyll Hotspots

Blooms observed in 10 out of 16 years of satellite ocean color coverage

October 19, 2004 PICES XIII meeting, Honolulu
What causes the Blooms?

- The mechanisms causing the blooms remain unknown.
- The lack of coincident SSH and SST anomalies suggests the blooms are not forced by subsurface upwelling of nutrient-rich water.
- Blooms occur in deep water, ruling out topographic forcing.
- Possible mechanisms include [Wilson, 2003]:
 - Nitrogen fixation
 - Vertical flux of nitrate from *Rhizosolenia* mats

October 19, 2004 PICES XIII meeting, Honolulu
Blooms are consistently located along 30°N, within the target area of several fisheries, including albacore and swordfish.

Do these blooms have an impact on higher trophic levels?
Caveat:

Peak fishing activity occurs in winter-spring, which is not when the blooms appear.

Region of blooms

From Seki et al., Fish. Ocean., 2002.
Release & recovery locations of tagged albacore

Region of blooms

Figure courtesy of NOAA/NMFS/SWFSC http://swfsc.nmfs.noaa.gov/albacore_tag

October 19, 2004 PICES XIII meeting, Honolulu
Catch per unit effort (CPUE) data for N. Pacific albacore fishery between 25-35°N and 160-130°W

Large bloom in 2000

October 19, 2004 PICES XIII meeting, Honolulu
Distribution of US albacore catch in 2000

Figure from Childers [2001]
Density distribution of TOPP animals

Region of blooms

Figure courtesy of Barbara Block, Stanford Univ., HML

October 19, 2004 PICES XIII meeting, Honolulu
Future results from TOPP could provide more information on the extent to which these blooms impact higher trophic levels.
Conclusions

- The blooms have a consistent seasonality, developing in late summer (Jul.-Aug), but significant interannual variability, having occurred in 10 of the 16 years observed by ocean color satellite data.

- The blooms are consistently located near 30°N. There is more variability in their longitude, which varies between 140°-160°W.

- The blooms do not appear to be forced by local physical ocean dynamics or by topography.

- The blooms occur within an important fisheries ground, but their impact on higher trophic levels is uncertain.