A new daily SST product of JMA
(Merged satellite and *in-situ* data Global Daily SST)

Toshiyuki Sakurai, Yukio Kurihara, and Tsurane Kuragano
(Office of Marine Prediction, JMA)
• Introduction
• Procedure of satellites’ data
• Space-time scale decomposition
• Bias correction and optimal interpolation analysis
• Validation
• Summary
Introduction

- Daily SST analysis adjacent to Japan started in 1996 at Office of Marine Prediction, JMA.
 - data: AVHRR/NOAA, buoy, ship
 - grid resolution: 0.25 X 0.25

- A new technique of analysis was introduced in April 2004.
 - MGDSST: Merged satellite and in-situ data Global Daily SST

- AVHRR/NOAA (infrared), AMSR-E/Aqua (Microwave)
 - in situ data are used to correct bias error in satellite data
- Scale Decomposed Space-Time OI
- Grid size is 0.25° x 0.25° in the Global Ocean
- Near-Real-Time Daily analysis (one day before)
Initial procedure of satellites’ data

Satellite Active Archive/NOAA
- GAC Level1B AVHRR/NOAA

Office of Marine Prediction, JMA
- cloud clearing
- convert to MCSST
- quality check by AMSR-E

JAXA
- Level2 AMSRE/Aqua
- quality check
- daily average
- 0.25 x 0.25 grid

MSC/JMA
- HRPT AVHRR/NOAA
- MSC
- MCSST
- 0.25 degree grid

AVHRR(GAC)

AMSR-E

AVHRR(MSC)

daily SST

MCS
• Availability of satellite data in Aug. 2004

- AVHRR <40%
- AMSR-E >60%

AMSR-E is better to detect short-period SST variations in the global area

• Spatial resolution of sensor
 AVHRR → high (1~4km) AMSR-E → low (40~50km)
 AMSR-E is not suitable for small scale analysis
Satellites’ SSTs are decomposed using a Gaussian filter in view of features of satellite’s data and scale of SST variations.

Nyquist signals for 0.25° and daily averaging.
Bias correction of satellites’ data (1)

• Long-term and large-scale bias among satellites and between satellite and in-situ data exist

The bias between AMSR-E and AVHRR --->
1: More than 1 degree Celsius
2: Seasonal and regional difference

Difference of monthly mean long period and large scale anomalies
Bias of each satellite’s SST against in-situ SST is corrected for long-period and large-scale fields.

STEP 1 : Solving Poisson equation

\[\nabla^2 T_{cor} = \nabla^2 S \]

\[\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \]

- \(T_{cor} \): corrected SST fields
- \(S \): satellite’s SST fields
- Internal boundary condition: In-situ SST

STEP 2 : Filtering bias fields

(to retrieve long-period and large-scale component)
• Difference between NOAA16 and AMSR-E for monthly mean long period and large scale anomalies

Not bias corrected

Bias corrected

Optimal Interpolation

1) Space-time OI (Kuragano T. and M. Kamchi, 2000) is applied to analyze SST for each component,

2) First guess is zero anomaly value

3) Sum of the analyzed values and climatology

Example of OI result
Products of MGDSST

SST 03 May 2004

SST anomaly 20040801
Validation of MGDSST

match-up with buoy which did not used in the analysis
(April 2004 ---- July 2004)

RMSE : 0.37 degree Celsius
Bias : +0.05 degree Celsius
Number of data : 879
Comparison with other products

Region B 4S-4N 150W-90W

Global 80S-80N

Central North Pacific 20N-50N 150E-140W

Monthly mean MGDSST
NCEP(OISSTver2)
GLBSST(JMA)
Comparison with other products (2)

• Difference between MGDSST and NCEP.OISSTver2 and Difference between NCEP_RTGSST and NCEP.OISSTver2 for Aug. 2002-Sep. 2004

• NCEP.RTGSST is the daily global SST product provided in real-time.

• MGDSST is consistent in almost all region, but lower in the western north Pacific.

• NCEP.RTGSST has considerable negative bias at high-latitude
Product distribution

- NEARGOOS Regional Real Time Data Base
 http://goos.kishou.go.jp/

- JMA Japan-GODAE LAS server
 http://godae.kishou.go.jp/
• MGDSST analysis started in April 2004

• Analysis in global area with $\frac{1}{4}$ degree grid resolution in real time.
• Biases among sensors are well-corrected.

• Microwave sensor and infrared sensor data are merged by optimal interpolation for several space-time scales.

• +0.05 Celsius degree higher than buoys’ SSTs, but lower than other products, especially in the western north Pacific.