Intraseasonal Wind Oscillations and their Influence on Northern California Current Coastal Ecosystems

John (Jack) Barth¹ and John Bane²

with contributions from:

Physics: Anthony Kirincich¹, Margaret McManus³, Steve Pierce¹, Libe Washburn⁴
Chlorophyll/Nutrients: Francis Chan¹, Karina Nielsen⁵, Ricardo Letelier¹
Barnacles/Mussels: Jane Lubchenco¹, Bruce Menge¹
Zooplankton: Bill Peterson¹,⁶
Ecosystem Modeling: Yvette Spitz¹

¹Oregon State University
²University of North Carolina
³University of Hawaii/University of California Santa Cruz
⁴University of California Santa Barbara
⁵Sonoma State University
⁶NOAA Fisheries
ATMOSPHERIC SURFACE PRESSURE
Height of 1000 mb surface (m)
Average: May-August 2001
SCHEMATIC OF INSTANTANEOUS JET STREAM AND SURFACE CYCLONIC WEATHER SYSTEMS
SCHEMATIC OF INSTANTANEOUS JET STREAM AND SURFACE CYCLONIC WEATHER SYSTEMS

Northward Displacement of Jet Stream
NORTHWARD WIND STRESS

Wind Stress (N/m²)

Bane et al. (2005)
NORTHWARD WIND STRESS

Passing Extratropical Cyclones
3- to 7-day periods of Northward Winds

Bane et al. (2005)
NORTHWARD WIND STRESS

Longer Periods of Persistent Southward Winds

Passing Extratropical Cyclones
3- to 7-day periods of Northward Winds

Bane et al. (2005)
NORTHWARD WIND STRESS
NEAR-SURFACE WATER TEMP

Bane et al. (2005)
NORTHWARD WIND STRESS
NEAR-SURFACE WATER TEMP
8-DAY LOW-PASS FILTERED

Bane et al. (2005)
NORTHWARD WIND STRESS
NEAR-SURFACE WATER TEMP

8-DAY LOW-PASS FILTERED

SERIES OF “20-DAY” OSCILLATIONS

Bane et al. (2005)
"20-DAY" OSCILLATIONS

Observed AAM Spectrum

Variance has been computed in each of 46 equal-area belts
[From Dickey et al., 1991]

Bane (UNC)

Atmospheric Angular Momentum
Geopotential height 200 mb
19-May-2001 12:00:00

200 mb gradient

Jet Stream position

Jet Stream position

Jun Jul Aug 2001
Northward Surface Stress

N-S Jet Stream Position along 125W (inverted)

Unfiltered JS Stream Position

R = 0.61, Significant at 95%

Bane et al. (2005)
Now what about the biology?

Wind: Stress (N/m²)

- Observed
- Model

Phytoplankton: Observed

Zooplankton: Model

Bane et al. (2006)
Spring Transition

Huyer and Smith (1978)
Interannual variability in wind stress

Cumulative wind stress since Spring Transition

Spring transition

Fall transition

Equatorward, Upwelling favorable

Barth/Pierce (OSU)

Interannual variability in wind stress

Cumulative wind stress since Spring Transition

Spring transition

Cumulative wind stress (Nm$^{-2}$days)

Fall transition

mean±sd (1985-2005)

Equatorward, Upwelling favorable

Barth et al. (2006)
late, weak upwelling in 2005 led to warm ocean temperatures

mean±sd (1985-2005)

PISCO

Barth et al. (2006)
late, weak upwelling in 2005 led to low nutrients and chlorophyll

Barth et al. (2006)
and unprecedented low recruitment!

mussels (*Mytilus* spp.)

PISCO

Barth et al. (2006)
The culprit? Strong intraseasonal wind oscillations and an anomalously southern Jet Stream location

Wind Stress (N m$^{-2}$)

Yearday

Mar Apr May Jun Jul Aug Sep

2005 20–30 day oscillations

mean+sd (1985-2005)

Newport, OR

44.6N = Oregon

Barth et al. (2006)
The culprit? Strong intraseasonal wind oscillations and an anomalously southern Jet Stream location

Jet Stream Position

May 2005

July 2005

Barth et al. (2006)
Summary

• 20-day intraseasonal oscillations in wind stress of central Oregon correlate with 20-day Jet Stream (JS) position fluctuations

• Upper-ocean temperature, phytoplankton and zooplankton follow 20-day wind stress oscillations with a several-day lag

• Late spring transition in 2005: caused by southern Jet Stream position and intraseasonal oscillations

• Warm, nutrient-poor water nearshore during spring

• Depressed primary production & sessile invertebrates recruitment (reduced zooplankton, fish, seabirds too)

• How is this related to climate variability?

• Presence and importance of ISOs in the Northwest Pacific?