Ecosystem-based fisheries resources assessment and management system in Jeonnam marine ranching in Korea

Hee Won Park and Chang-Ik Zhang
Pukyong National University

Current fisheries management in Korea waters

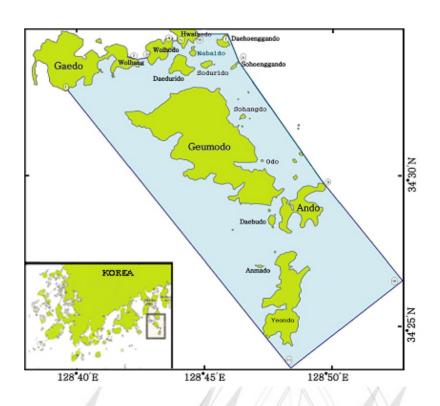
- * TAC-based management for 10 species
- ❖ Resource rebuilding activities by artificial reefs
- Releasing fries and juveniles, seaweed beds
- Buy-back program to reduce fishing vessels
- ❖ MPAs
- Marine ranching program
- Self-regulatory fisheries management

Ecosystem based fisheries approach in Korea

- Ecosystem modeling
 - Apply to marine ranching ecosystems (Lee, 2007)
 - Apply to Korean waters (East/Japan sea, Yellow sea)
- Ecosystem-based integrated fisheries assessment approach
 - Ecological Risk Assessment
 - Analysis for Large purse seine fishery (Park, 2007; Kwon, 2007)
 - Ecosystem-based fisheries assessment and management
 - Marine ranching
 - Stock rebuilding
 - TAC fisheries

In this study

Introduction for ecosystem-based fisheries assessment using


Jeonnam marine ranching data

• Effectiveness of marine ranching program between pre-, post

construction by ecosystem-based fishers assessment approach

Jeonnam Marine ranching program

- Location
 - Western part of East-China Sea
- Study periods
 - 2002~2008 (7 years)
- Areas
 - Total area: 203Km²
 - Marine ranching area: 151km²
- Target species
 - Black seabream, Rock bream, Black rockfish

Data and Methods

- Using data
- MOMAF, Study on the foundation-laying of Jeonnam archipelago marine ranching program in Korea (2003-2007)
- Comparing Periods
- 2003: Pre-construction of Jeonnam marine ranching
- 2007: Post-construction of Jeonnam marine ranching

Ecosystem based fisheries assessment?

2 tier system (Tier 1 and Tier 2)

Quantitative analysis

- Level of information High
- For target species
- 19 indicators used

Tier 1

Semi
-quantitative
& quality
analysis

- Level of information low
- For bycatch species
- 24 indicators used

Tier 2

Risk Indices

ORI (Objectives risk index)

ORI =
$$\frac{\sum_{i=0}^{n} I_{i} W_{i}}{\sum_{i=1}^{n} W_{i}}$$

I_i: Score of indicator i

W_i: Weighting factor of indicator i

n : Number of indicators

SRI (Species risk index)

$$SRI = \lambda_s ORI_s + \lambda_B ORI_B + \lambda_H ORI_B$$

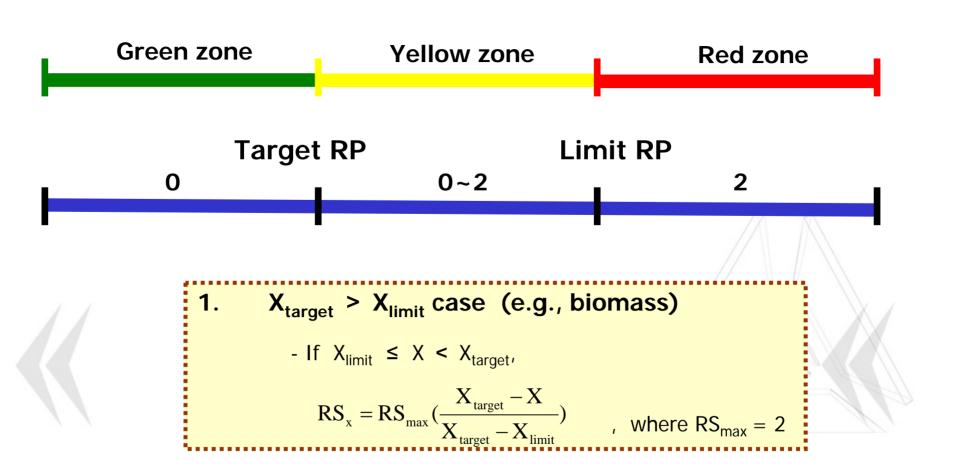
FRI (Fisheries risk index)

$$FRI = \frac{\sum_{i} B_{i} SRI_{i}}{\sum_{i} B_{i}}$$

B_i: Biomass or biomass index of species i

Risk Indices

MI (Management status improvement Index)


$$MI_O = \frac{ORI_t - ORI_{t+i}}{ORI_t} \times 100$$

$$MI_{S} = \frac{SRI_{t} - SRI_{t+i}}{SRI_{t}} \times 100$$

$$MI_{F} = \frac{FRI_{t} - FRI_{t+i}}{FRI_{t}} \times 100$$

Calculation for risk scores

Reference points (RP), Risk, Management

Tier 1_ Sustainability

Indicator	Reference points		
	Target (0)	Limit (0~2)	Beyond limit (2)
Biomass (B)	B≥ B _{40%}	B _{40%} >B≥B _{35%}	B <b<sub>35%</b<sub>
or CPUE (U)	U≥ U _{ABC}	U _{ABC} >U≥U _{limit} 1	U <u<sub>limit</u<sub>
Fishing mortality (F)	F ≤ F _{40%} (or F _{0.1})	$F_{40\%}$ (or $F_{0.1}$) < $F \le F_{MSY}$	F>F _{MSY}
or Catch (C)	C ≤ ABC	ABC < C≤MSY	C>MSY
Age at first capture (t)	t≥ t _{target}	t _{target} >t≥t _{limit} ²	t <t<sub>limit</t<sub>
Habitat size (H)	H≥ H _{target}	H _{target} >H⊵H _{limit} ³	H <h<sub>limit</h<sub>
FIB index	FIB≥ FIB _{target}	FIB _{target} >FIB⊵FIB _{limit} ⁴	FIB <fib<sub>limit</fib<sub>
FRP index	FRP≥ FRP _{target}	FRP _{target} >FRP≥FRP _{limit} ⁵	FRP <frp<sub>limit</frp<sub>
Total production of ecosystem (P)	P≥ P _{target}	P _{target} >P⊵P _{limit} ⁶	P <p<sub>limit</p<sub>

FIB (Fish is balance) $FIB = \log(Y_i \cdot (1/TE)^{TL_i}) - \log(Y_0 \cdot (1/TE)^{TL_0}) \quad \text{(Pauly et al., 2000)}$

FRP (Fish Reproduction Potential) $FRP = \log \left(\frac{Y_i \cdot MR_i}{q \cdot f_i} \right) - \log \left(\frac{Y_0 \cdot MR_0}{q \cdot f_0} \right)$ (Lee et al., 2007)

Tier 1_ Biodiversity

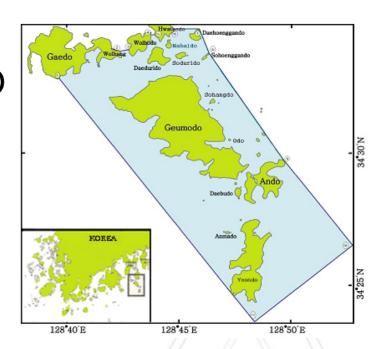
Indicator	Reference points			
	Target (0)	Limit (0~2)	Beyond limit (2)	
Bycatch rate (BC/C)	(BC/C) ≤ (BC/C) _{target}	(BC/C) _{target} <(BC/C) ≤(BC/C) _{limit} ¹	(BC/C) >(BC/C) _{limit}	
Discard rate (DC/C)	(DC/C) ≤ (DC/C) _{target}	(DC/C) _{target} <(DC/C) ≤(DC/C) _{limit} ²	(DC/C) >(DC/C) _{limit}	
Mean trophic level (TL)	TL≥ TL _{target}	TL _{target} >TL≥TL _{limit} ³	TL <ti<sub>limit</ti<sub>	
Diversity index (DI)	DI≥ DI _{target}	DI _{target} >DI≥DI _{limit} ⁴	DI <di<sub>limit</di<sub>	
Invasive/Traditional species in catch (I/T)	(I/T) ≤ (I/T) _{target}	(I/T) _{target} <(I/T) ≤(I/T) _{limit} ⁵	(I/T) >(I/T) _{limit}	

Diversity index: $DI = -\sum_{j=1}^{N} P_j \cdot \ln P_j$ (Modified from Shannon and Wiener (1963))

where N: is the total number of individuals, P_i : proportion of each species

Tier 1_ Habitats

Indicator	Reference points			
Indicator	Target (0)	Target (0) Limit (0~2) Be		
Critical habitat damage rate (DH/H)	(DH/H) ≤ (DH/H) _{target}	(DH/H) _{target} <(DH/H) ≤(DH/H) _{limit} 1	(DH/H) >(DH/H) _{limit}	
Pollution rate of spawning and nursery ground (PG/G)	(PG/G) ≤ (PG/G) _{target}	(PG/G) _{target} < (PG/G) ≤(PG/G) _{limit} ²	(PG/G) >(PG/G) _{limit}	
Lost fishing gear (Frequency, FR)	FR ≤ FR _{target}	FR _{target} < FR ≤ FR _{limit} ³	FR > FR _{limit}	
Discarded wastes (DW)	DW ≤ DW _{target}	DW _{target} < DW ≤ DW _{limit} ⁴	DW > DW _{limit}	
Prohibited area from fishing (PA)	PA≥ PA _{target}	PA _{target} >PA⊵PA _{limit} ⁵	PA <pa<sub>limit</pa<sub>	
No. of artificial reefs (N)	│N-N _{target} │ ≤ 0.2N _{target}	0.2N _{target} < N-N _{target} ≤0.4N _{target}	N-N _{target} >0.4N _{target}	
Area of artificial seaweed bed (A)	A-A _{target} ≤ 0.2A _{target}	0.2A _{target} < A-A _{target} ≤0.4A _{target}	A-A _{target} >0.4A _{target}	


Tier 2_ Sustainability

Indicator	Reference points			
	Target (0)	Limit (1)	Beyond limit (2)	
CPUE	CPUE data are available and not declining	CPUE data are available, but declining	CPUE data are not available	
Precautionary approach and sensitivity of stock assessment	Adequate stock assessment is provided and precautionary approach is adopted	Inadequate stock assessment is provided, but precautionary approach is adopted	Inadequate stock assessment, and precautionary approach is not adopted	
Restricted access	Fixed access, little latent effort exists (≤30% of licenses inactive)	New entrants can be licensed >30% latent effort in fishery	Open access	
Fishery monitoring and sampling	Observer program in place, sampling for all fishery data	Monitoring and sampling for a limited number of fisheries	Negligible monitoring or sampling	
Fishing method	All fishing methods and patterns are evaluated and changes monitored	Fishing methods and patterns are evaluated for main methods and some geographical areas	Main fishing methods and patterns are not evaluated	
Size at entry	≥Size at maturity	<size 20%="" at="" but="" catch="" immature<="" less="" maturity,="" of="" td="" than=""><td>Greater than 20% of the catch immature or size at maturity unknown</td></size>	Greater than 20% of the catch immature or size at maturity unknown	

Application for Jeonnam marine ranching

- Target Area
- Jeonnam marine ranching (151Km²)
- Target fishery
- Pole and line fishery
- Target species
- Black sea bream
- Bycatch species (6 species)
- Jacopever rockfish, Black rockfish, Red sea bream, Sea bass, Yellow tail, Common eel

Results _ Risk score in Jeonnam marine ranching

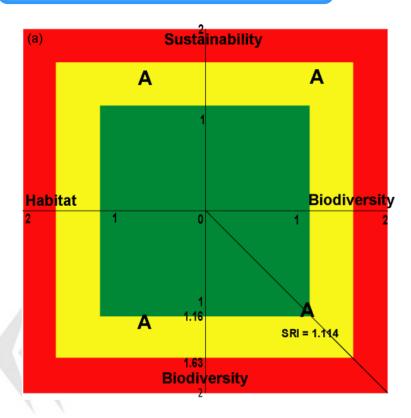
Objectives	Indicator	2003	2007
Sustainability	1. CPUE	2	0
	2. Catch	2	0
	3. Age at first capture	0	2
	4. Habitat size	0	0
	5. FIB index	2	0
	6. FRP index	2	0
	7. Total production of ecosystem	1	0.53
	1. Bycatch rate	1.62	0
Biodiversity	2. Discard rate	2	0.09
	3. Mean trophic level	0.72	0
	4. Diversity index	0.67	(0
	5. Invasive/Traditional species catch	0	0.55
//	1. Critical habitat damage rate	0	0
	2. Pollution rate of spawning and nursery ground	0	0
(3. Lost fishing gear	0	0
Habitat	4. Discarded wastes	0	0
	5. Prohibited area from fishing	2	1.22
	6. No. of artificial reefs	2	0
	7. Area of artificial seaweed bed	2	0

Results

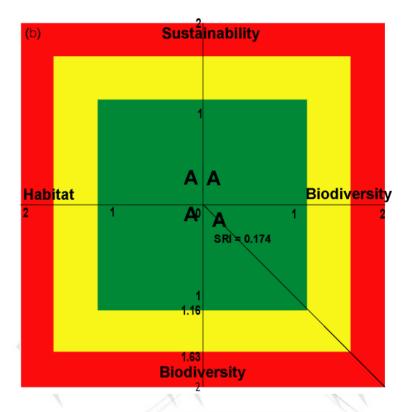
Tier 1 _ Black sea bream (Acanthopagrus schlegelii)

Objectives	ORI (ORI (Zone)		Cignificance
	2003	2007	- MI	Significance
Sustainability	1.444	0.281	80.58	* * *
Biodiversity	1.233	0.105	91.49	*
Habitat	0.667	0.136	79.60	**
SRI	1.114	0.174	84.41	***
FRI	1.541	0.566	63.23	

^{***} denotes a significant difference at α < 0.001 level


^{**} denotes a significant difference at α < 0.01 level

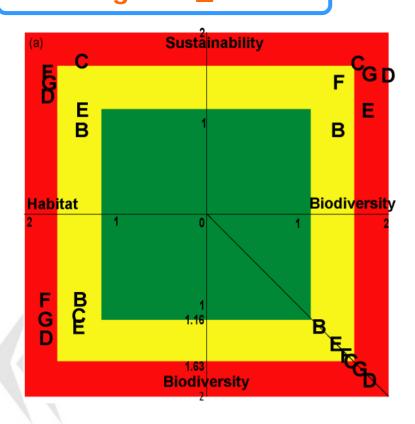
^{*} denotes a significant difference at α < 0.05 level

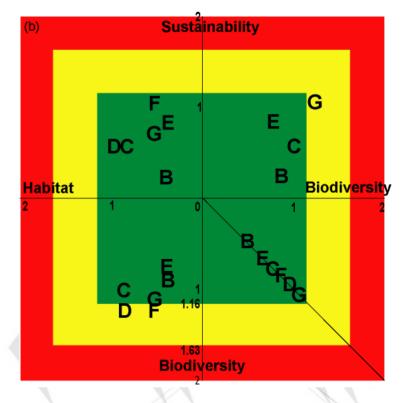

Results

>>>>>

ORI diagrams_ Tier 1

Post-construction (2007)


Result


Tier 2 _ Bycatch species

Species	S	MI	
	2003	2007	IVII
Black rockfish	1.246	0.486	61.01
Red sea bream	1.566	0.803	48.73
Common seabass	1.762	0.877	50.22
Jacoveper rockfish	1.430	0.662	53.68
Yellow tail	1.548	0.818	47.16
Common eel	1.688	0.934	44.68

Results

ORI diagrams_ Tier 2

Pre-construction (2003)

Post-construction (2007)

Conclusion

Effectiveness of Jeonnam marine ranching area

Result of Tier 1(Black seabream)

- Improved sustainability, and SRI at 0.001 critical level
- Improved habitat at 0.01 critical level
- Improved biodiversity at 0.05 critical level

Conclusion

Assessment methodology hasn't verified

- More considering of reference points
- Need to basic study to get information of reference points

Develop the social economic effort