

Upper ocean export of particulate organic carbon in the Bering and Chukchi seas estimated from thorium-234

<u>Hao Ma</u>^{1, 2}, Mingduan Yin², Liqi Chen², Jianhua He², Wen Yu ^{1, 2} and Shi Zeng¹

- 1. Department of Engineering Physics, Tsinghua University, Beijing China;
- 2. Key laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, State Oceanic Administration, P.R. China

Financially supported by PICES 17th Annual Meeting

Oct. 30, 2008

Introduction

The euphotic zone:

- active water depth in the ocean for marine phytoplankton to convert inorganic carbon into organic carbon, resulting in a CO₂ exchange across the atmosphere/ocean interface.
 important layer for the production of biogenic matter and for the vertical transport of particles to the deep sea.
- **POC** (particulate organic carbon) **export flux** from the euphotic zone to the deep ocean:
 - 1. '*Export production*': critical index of the 'ability' of biological pump.
 - 2. necessary measurement to determine the biogeochemical cycling rates of particle-reactive elements and constituents in the ocean.

Approaches to estimate POC export fluxes

- 1. sediment traps: hydrodynamic situations; 'swimmer'; expensive (Buesseler, 1991)
- 2. radioactive isotope tracing technique: ²³⁴Th-²³⁸U disequilibrium method

Thorium-234(²³⁴Th):

- 1. radioactive nuclide; high particle reactivity; produced in-situ by decay of ²³⁸U
- 2. scavenged and removed rapidly with sinking particulate matter
 - \rightarrow ²³⁴Th deficiency relative to ²³⁸U (especially in the upper water column)
- 3. half life: 24.1d → tracing biogeochemical processes in the timescale similar to particle dynamics in the upper ocean (Cai et al., 2002; Waples et al., 2006)
- 4. robust method to estimate POC fluxes (Buesseler et al., 2006)

AAA

Experimental

Study area and sample collection

- 1. the Second Chinese National Arctic Expedition (CHINARE) from July to September 2003 on board R/V 'Xuelong'.
- 2. depth profiles of dissolved and particulate ²³⁴Th in upper water columns collected at two
- stations in the Bering Sea (basin) and another one station in the Chukchi Sea (shelf).

Analysis and measurement

- 1. ²³⁴Th: similar to traditional Fe(OH)₃ co-precipitation method with alpha-spectrometer and beta-counter (Anderson and Fleer, 1982; Chen et al., 1997);
- 2. ²³⁸U (dpm•L⁻¹)* =0.07081×salinity (Chen et al., 1986)

* dpm means decay per minute and equals to 1/60 Bq.

Fig.1 Sampling stations

Depth profiles

- 1. Particulate ²³⁴Th: about 9%~36% of total ²³⁴Th (dissolved plus particulate)
- 2. ²³⁴Th shows apparent deficiency relative to ²³⁸U in the euphotic zone \rightarrow scavenged and removed with sinking particles to the deep ocean
- 3. tending to achieve a balance between total ²³⁴Th and ²³⁸U under 100m
- 4. BR03: excessive total ²³⁴Th to ²³⁸U, 200m depth : <u>re-mineralization</u>...
- 5. R01: total ²³⁴Th notable deficiency as compared to ²³⁸U, 40m depth: <u>re-</u><u>suspension of particles</u> from bottom sediments...

Model

 $\partial A_{Th} / \partial t = 0 = \lambda \cdot \left[A_U - \left(A_{DTh} + A_{PTh} \right) \right] - P_{Th} + V$ (Coale and Bruland, 1985)

 A_U , A_{DTh} and A_{PTh} represent the activities (dpm·L⁻¹) of ²³⁸U, dissolved ²³⁴Th and particulate ²³⁴Th, and λ is the ²³⁴Th decay constant (0.02876 d⁻¹). The term P_{Th} (dpm·m⁻³·d⁻¹) represents the removal rate of particulate ²³⁴Th due to particle sinking and V, the contributions of advection and diffusion to the ²³⁴Th fluxes.

1-D steady state irreversible model neglecting V

$$\frac{\partial A_{DTh}}{\partial t} = 0 = \lambda \cdot A_U - \lambda \cdot A_{DTh} - J_{Th}$$
$$\frac{\partial A_{PTh}}{\partial t} = 0 = J_{Th} - \lambda \cdot A_{PTh} - P_{Th}$$

 $\tau_D = A_{DTh} / J_{Th}$ $\tau_P = A_{PTh} / P_{Th}$

Table 1 Resident times of ²³⁴Th with respect to particle scavenging and removal

Stations	Depth of the euphotic zone /m	τ _D /d	т _Р /d	²³⁴ Th fluxes/ dpm m ⁻² d ⁻¹
BR24	50	57.5	29.8	678.6
BR03	50	52.1	20.5	849.4
R01	40	29.1	9.8	1366.5

POC export fluxes

= ²³⁴Th fluxes × (POC/part.²³⁴Th) bottom of euphotic zone (Buesseler, 1998)

Results: Bering Sea (basin): BR24: 11.66 mmol C m⁻² d⁻¹ 'HNLC' BR03: 11.69 mmol C m⁻² d⁻¹

Chen M. et al. 2003: 10~15 mmol C m⁻² d⁻¹

Chukchi Sea (shelf): R01: 21.32 mmol C m⁻² d⁻¹

High productivity

MA Q. et al. 2005: 1.6~27 mmol C m⁻² d⁻¹

ThE ratio

= POC export flux / primary productivity

(Buesseler, 1998)

- The fraction of carbon uptake removed from the upper ocean via sinking particles
- the efficiency of biological pump in the upper water column

Primary productivity

Bering Sea:

19.8 mmol C m⁻² d⁻¹ (Chen M. et al., 2003)

Chukchi shelf:

42.5 mmol C m⁻² d⁻¹ (Chen M. et al., 2002)

ThE ratio:

Bering Sea (basin): ~<u>59%</u> of carbon uptake by phytoplankton exported

Chukchi Sea (shelf): ~<u>50%</u> of organic carbon synthesized by phytoplankton exported

High ThE ratios in high-latitudes due to presence of large phytoplankton, particularly diatoms (Buesseler, 1998)

Summary

- 1. POC export flux of the Chukchi Sea (shelf, ~21.3 mmol C m⁻² d⁻¹) was almost twice higher than that of the Bering Sea (basin, ~11.7 mmol C m⁻² d⁻¹).
- 2. High ThE ratios in both investigated areas (>50%).
- 3. The high POC flux and ThE ratio indicate that Chukchi Sea has an actively running biological pump and is an important global carbon sink.
- 4. The high ThE ratios suggest the Bering basin may have great potential to absorb more CO_2 from atmosphere under certain conditions (e.g. iron fertilization...)

