Forecasting the impacts of Global Warming on Pacific Salmon

Pacific salmon species

Mar		AVERAGE AGE	RANGE
All Marrien by Ted Wolfe	pink salmon (<i>O. gorbuscha</i>)	2 years	(2 years)
TOTA INTHINE	chum salmon (<i>O. keta</i>)	4 years	(3 - 6 years)
	sockeye salmon (<i>O. nerka</i>)	4 years	(4 – 6 years)
Substation by Ted Wolfe	coho salmon (<i>O. kisutch</i>)	3 years	(2 – 4 years)
allustration by fied Walke	chinook salmon (<i>O. tshawytcha</i>)	4 years	(1 – 7 years)

Pacific salmon catch by all countries

Pink and chum salmon catch by all countries is increasing

The percent of pink and chum salmon in the total Pacific salmon catch

The percent of sockeye salmon in the total Pacific salmon catch

Catch in Russia is increasing and recent estimates may be 30% higher than reported

% of the total catch by Canada

British Columbia Pacific salmon catch

 Trends in Pacific salmon abundance indicate that natural trends in climate strongly affect production.

What is the mechanism?

 What causes the abrupt shifts in the trends in climate?

Historic sockeye salmon abundance

Hatchery production of chum salmon (NPAFC data)

Hatchery production of pink salmon (NPAFC data)

Russian hatcheries

 NPAFC data indicates that there are 41 hatcheries producing 600,000,000 pink and chum salmon

 In 2007, about 895,000,000 pink and chum salmon were produced

Russian hatcheries

- There may be 10 more hatcheries on Sakhalin Islands by 2010.
- These 10 hatcheries could produce about 500,000,000 more pink and chum salmon.
- There may be 19 more hatcheries built after 2010, producing ~1,000,000,000 pink and chum salmon, if production doesn't decline.

Japanese hatcheries

Japan hatcheries produce
~2,000,000,000 juvenile chum
salmon, contributing to ~60% of
the total catch

Estimated annual hatchery production by all countries in 2006/2007

		Russia	Japan	Alaska	Total
Hatchery	pink	474,000,000	147,200,000	808,600,000	1,429,800,000
production	chum	421,000,000	2,000,000,000	541,200,000	2,962,200,000
	Total	895,000,000	2,147,200,000	1,349,800,000	4,392,000,000
Adult	pink	18,960,000	5,888,000	32,344,000	57,192,000
production	chum	12,630,000	60,000,000	16,236,000	88,866,000
	Total	31,590,000	65,888,000	48,580,000	146,058,000

- Japan/Alaska/Russia → 3% for chum salmon
- Japan/Alaska/Russia → 4% for pink salmon

Catch of chum salmon produced in hatcheries in 2006/2007

- Japan catches 60 million chum salmon (~60% of total catch)
- Russia catches 9 million chum salmon produced in hatcheries (~9% of total catch)
- Alaska catches 11 million chum salmon produced in hatcheries (~11% of total catch)

Exploitation rates are estimated as 100% for Japan and 70% for Russia and Alaska.

Catch of pink salmon produced in hatcheries in 2006/2007

- Japan catches 7 million chum salmon (~3% of total catch)
- Russia catches 13.3 million chum salmon produced in hatcheries (~4% of total catch)
- Alaska catches 22.4 million chum salmon produced in hatcheries (~10% of total catch)

Exploitation rates are estimated as 100% for Japan and 70% for Russia and Alaska.

 Hatcheries in 2006/2007 contributed approximately 282,000 t to the total chum salmon catch or 80%

 Hatcheries in 2006/2007 contributed approximately 57,000 t to the total pink salmon catch or 17%

Major factors affecting the future abundance of Pacific salmon as an aggregate of species

- Global warming
- Natural climate trends
- Hatcheries
- Fishing
- Freshwater habitat

Mechanism (1)

 Rapid, early marine growth is necessary for good survival to increase lipid storage for first ocean winter

Mechanism (2)

- Earlier spring in ocean
- Changes carrying capacity favours pink and chum salmon
- Less favourable for coho and chinook salmon

Conclusions

- Pacific salmon abundance is strongly affected by natural trends in climate
- The recent warming of the subarctic Pacific has increased the capacity to produce pink and chum salmon but not coho and chinook salmon
- Hatcheries are a major contributor to stock and recruitment relationships

Conclusions

- Earlier plankton production may favour pink and chum salmon
- Coho and chinook salmon may be in trouble at the southern limit of their distribution
- A common mechanism regulating marine survival may be the rate of growth in the first few months up to the summer solstice
- It is important to determine what causes the shifts in trends in climate