Integrating Ocean System Models Using a Software Framework

Thomas C. Wainwright
NOAA Northwest Fisheries Science Center

Jim J. Colbert Oregon State University

Bernard A. Megrey
NOAA Alaska Fisheries Science Center

Motivation

- Ensemble Modeling
 - Benefits of ensemble analyses using multiple alternative model formulations
- Complexity of Modeling Systems
 - Increasing complexity in climate modeling systems
 - Difficulty of linking together disparate models
- Software Reliability
 - Modular software isolates bugs, eases maintenance
 - Re-usable components reduce introduction of errors while porting models to new systems

Why a common software framework?

Earth system modelling expertise widely distributed

Earth Systems Modeling Frameworks

- Component-based System for Linking Gridded Models
 - Each component has a standard calling interface and behavior
 - Designed for multi-processor communications
- Superstructure for Linking Components
 - Gridded Components and Couplers
 - Data communications and regridding
- Infrastructure for Developing Components
 - Time Management
 - Data structures: arrays, fields, etc.
 - Message logging and data I/O

NASA GEOS-5

Courtesy of ESMF (http://www.esmf.ucar.edu)

Earth Systems Modeling Frameworks

- ESM Software Frameworks Can
 - Reduce Costs:
 - Shared development costs
 - Component re-use
 - Enhance Science:
 - Scientists focus on science, not software
 - Software available to smaller, lower budget teams
 - Allow comparison of diverse models
- Two main ESM Frameworks
 - PRISM
 - EU "Partnership for Research Infrastructures in earth System Modelling"
 - □ ESMF
 - US "Earth Systems Modeling Framework"

Why ESMF?

- Wide adoption, at least in U.S.

 - Numerous components already in use
 - ► Atmosphere: 19, Ocean: 9, Land: 7, Other: 3
 - Many others under development
 - Atmosphere: 19, Ocean: 7, Land: 3, Other: 9
- Consistent modular design
- High Portability
- Free and Open Source
- Community Supported

ESMF NEMURO

A Prototype Ocean Ecosystem ESMF Component

ESMF Evaluation

- Advantages
 - Strongly modular design
 - Highly portable
 - Flexible data structures
 - Growing user base

- Disadvantages
 - Complex API
 - Difficult to learn
 - Shifting interfaces
 - Some computation overhead

- Barriers to Adoption
 - Little known outside U.S.
 - Lacks critical mass of applications
- Conclusion
 - A useful tool, but not yet fully ready

Next Steps

- Put prototype code on PICES MODEL web site
- Finish coupling with ROMS-ESMF
 - Full 3D gridded physics
 - Based on ROMS "BioToy" configuration
 - Provides standard benchmark example
- Run Benchmarks
 - NEMURO-ESMF coupled to ROMS vs. native ROMS implementation of NEMURO
 - Check correctness of native ROMS NEMURO
 - Benchmark overhead cost of ESMF coupling
 - Optimize NEMURO ESMF code

Many Thanks To

- PICES MODEL Task Team for NEMURO and related models
- NOAA High Performance Computing and Communications for funding
- Cecelia DeLuca and the rest of the ESMF team for frequent help with software development questions

For More Information:

http://www.esmf.ucar.edu

http://www.prism.enes.org

NEMURO ESMF -- Coming soon to:

http://www.pices.int/members/task_teams/MODEL.aspx