Motivation

- **Ensemble Modeling**
 Benefits of ensemble analyses using multiple alternative model formulations

- **Complexity of Modeling Systems**
 Increasing complexity in climate modeling systems
 Difficulty of linking together disparate models

- **Software Reliability**
 Modular software isolates bugs, eases maintenance
 Re-usable components reduce introduction of errors while porting models to new systems
Why a common software framework?

- Earth system modelling expertise widely distributed

Geographically

Thematically

PRISM overview

Courtesy of PRISM (http://www.prism.enes.org)
Earth Systems Modeling Frameworks

- **Component-based System for Linking Gridded Models**
 - Each component has a standard calling interface and behavior
 - Designed for multi-processor communications

- **Superstructure for Linking Components**
 - Gridded Components and Couplers
 - Data communications and regridding

- **Infrastructure for Developing Components**
 - Time Management
 - Data structures: arrays, fields, etc.
 - Message logging and data I/O
Earth Systems Modeling Frameworks

- ESM Software Frameworks Can Reduce Costs:
 - Shared development costs
 - Component re-use
- Enhance Science:
 - Scientists focus on science, not software
 - Software available to smaller, lower budget teams
 - Allow comparison of diverse models
- Two main ESM Frameworks
 - **PRISM**
 - EU “Partnership for Research Infrastructures in earth System Modelling”
 - **ESMF**
 - US “Earth Systems Modeling Framework”
Why ESMF?

- Wide adoption, at least in U.S.
 - 4 Agency Sponsors
 - Numerous components already in use
 - Atmosphere: 19, Ocean: 9, Land: 7, Other: 3
 - Many others under development
 - Atmosphere: 19, Ocean: 7, Land: 3, Other: 9

- Consistent modular design
- High Portability
- Free and Open Source
- Community Supported
ESMF NEMURO

A Prototype Ocean Ecosystem
ESMF Component
ESMF Evaluation

Advantages
- Strongly modular design
- Highly portable
- Flexible data structures
- Growing user base

Disadvantages
- Complex API
- Difficult to learn
- Shifting interfaces
- Some computation overhead

Barriers to Adoption
- Little known outside U.S.
- Lacks critical mass of applications

Conclusion
- A useful tool, but not yet fully ready
ESMF v1
Prototype

ESMF v2
Components VM and Utils
ESMF_GridCompRun()

ESMF v3
Index Space Operations
ESMF_ArraySparseMatMul()

ESMF v4
Grid Operations
ESMF_GridCreate()
ESMF_FieldRegrid()

ESMF v5
Standardization
Build, init, data types, error handling

Courtesy of ESMF (http://www.esmf.ucar.edu)
Next Steps

■ Put prototype code on PICES MODEL website
■ Finish coupling with ROMS-ESMF
 Full 3D gridded physics
 Based on ROMS “BioToy” configuration
 ► Provides standard benchmark example
■ Run Benchmarks
 NEMURO-ESMF coupled to ROMS vs. native
 ROMS implementation of NEMURO
 ► Check correctness of native ROMS NEMURO
 ► Benchmark overhead cost of ESMF coupling
 Optimize NEMURO ESMF code
Many Thanks To

- PICES MODEL Task Team for NEMURO and related models
- NOAA High Performance Computing and Communications for funding
- Cecelia DeLuca and the rest of the ESMF team for frequent help with software development questions
For More Information:

http://www.esmf.ucar.edu

http://www.prism.enes.org

NEMURO ESMF -- Coming soon to:

http://www.pices.int/members/task_teams/MODEL.aspx