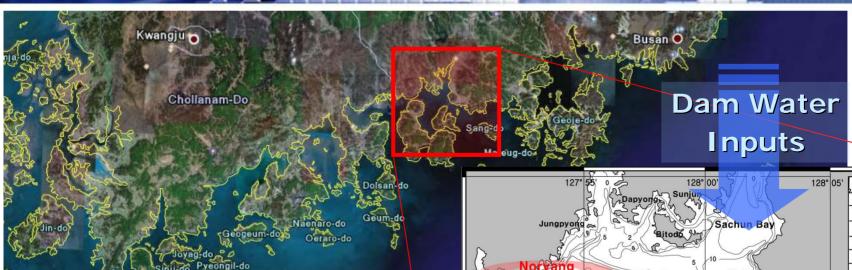
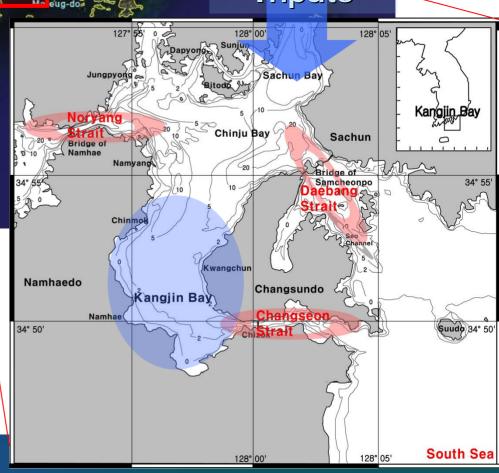
Impact of Dam Water Release Based on a Numerical Model of the Kangjin Bay, South Sea, Korea


Oct. 28, 2008

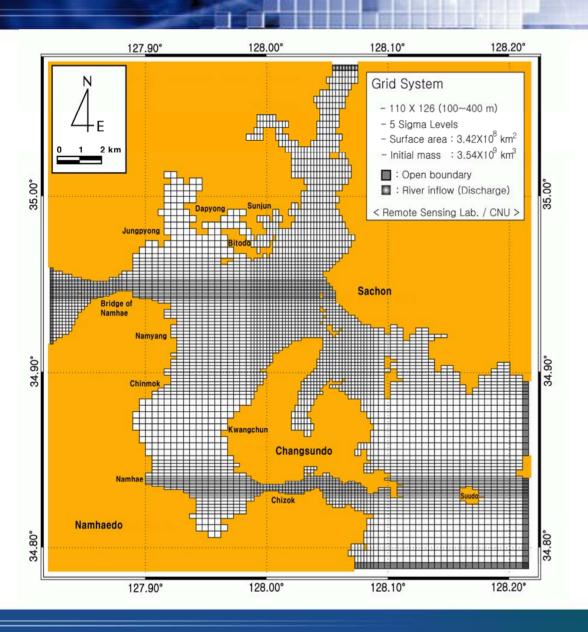
Dept. of Oceanography, Chungnam National University

Kwang-Young Jung, Young-Jae Ro and Chung-Ho Lee

PICES 17th Annual Meeting


Physical Setting & Bottom Topography

Location: 34°52′ N, 127°58′ E


Taerang-do

- E-W: 10 km, N-S: 18 km
- Mean depth: 8.9 m, Max. depth: 20 m
- Area: 195.9 km²
- 3 straits: Noryang, Daebang, Changseon

- Previous study
 - Real-time monitoring of the environmental parameters in the Marine Large-Arc Shell Culture Bed (Ro, 2006)
 - Tidal & sub-tidal current characteristic (Ro, 2007)
 - Numerical modeling of tide & tidal current (Ro et al., 2007)
- This study investigates current system in the Kangjin Bay by using numerical model
 - : Tidal & residual, Wind-driven and Density-driven current
- How much salinity is diluted by fresh water dam discharge?
- Flushing time?

Model Specification

Model code

- ECOM3D (Hydroqual, 2002)

Grid system

- 110 X 126
 - 100-400 m
 - 5 sigma levels

Time step

- Internal: 20 sec

- External: 2 sec

Open boundary condition

- 4 major tidal constituents
- M2, S2, K1, O1

Dam discharge

- Obs. Temp. & Salt. data
- Obs. Wind data

Field Measurements & Datasets

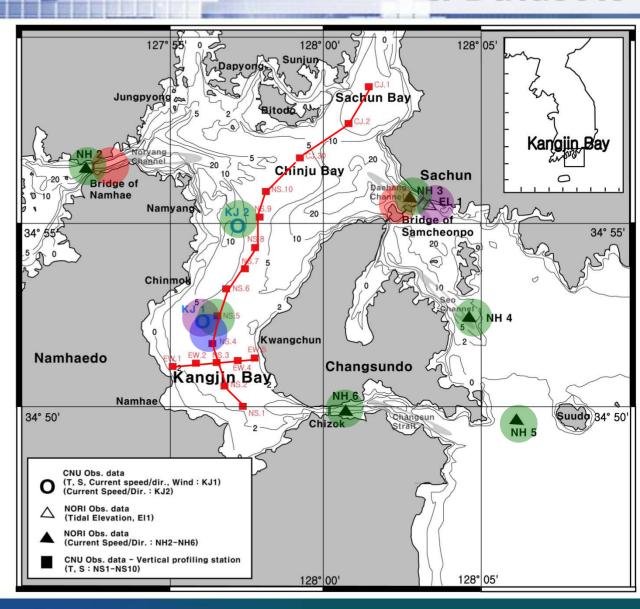
Surface elevation

- Tide gauge at 2 stations (KJ1, EL1)

Current & direction

- RCM9 at 7 stations (KJ1, KJ2, NH2-6)
- ADCP at 2 stations (DB, NR)

Water quality parameters


- Temp., Salt. and D.O. etc.
 - Real-time monitoring sys.(KJ1)

Meteorological data

- AWS (KJ1)

Surveys—

- E-W and N-S cross section

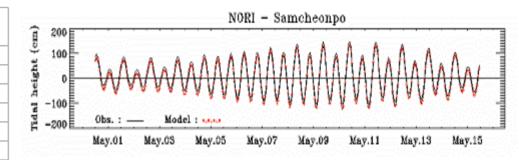
- Dam Discharge Data by KWRC

- Aug.15~30, 2004 (15 days)
- Total discharge volume : 8.41x10⁸ m³
- Total mass of KJ Bay = $1.96 \times 10^9 \text{ m}^3$
- Total mass of model domain = 3.54x10⁹ m³
- 1st peak discharge : 3,500 m³/sec
- 2nd peak discharge : 2,800 m³/sec

Model Calibration & Verification (Tide and Tidal Currents)

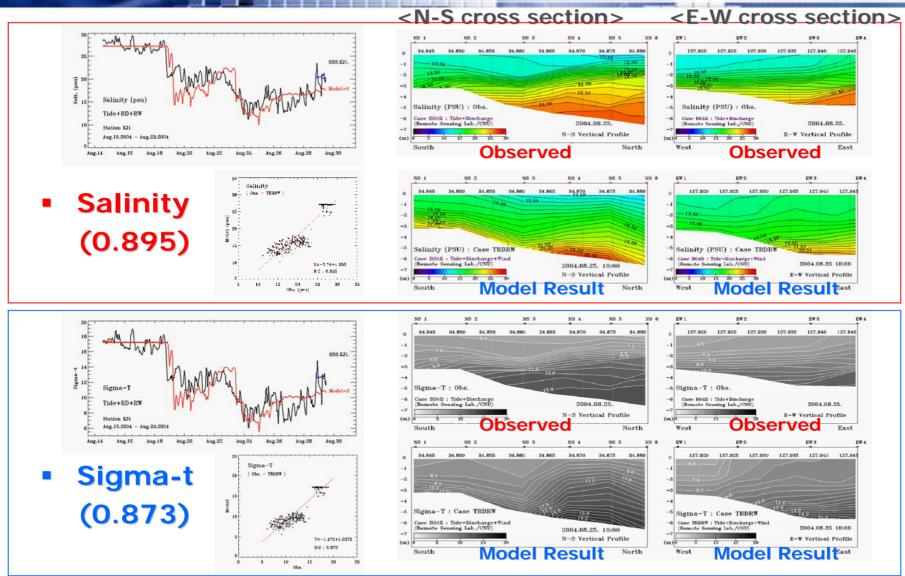
- Skill analysis = (1-R.error)
- Between obs. & res. of harmonic analysis
- most scores : over 0.9

(1-R.Error)


 $0.8 \le blue \le 1.0$

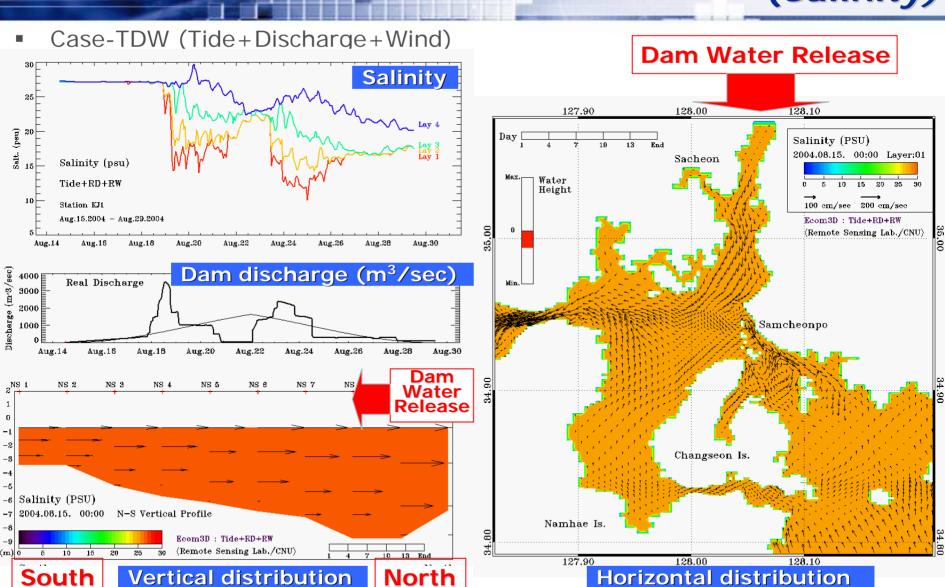
 $0.6 \le black < 0.8$

Red < 0.6

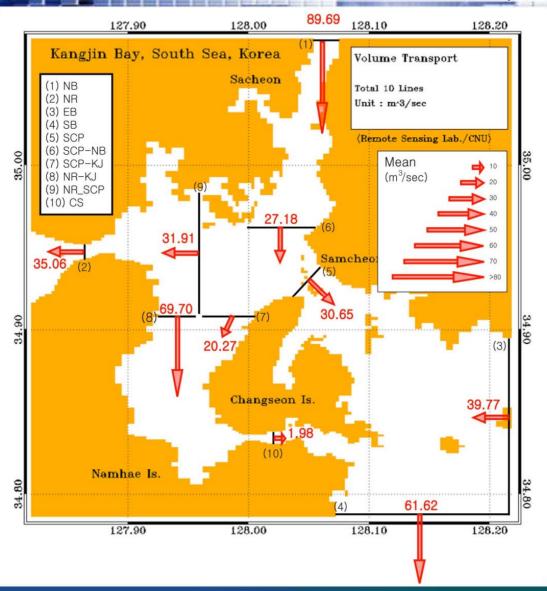

Tidal Current (1-R.Error)		CNU(Obs.) Vs Model Results						NORI (Obs.) Vs Model Results									
		KJ-1		KJ-2		NR		NH-2		NH-3		NH-4		NH-5		NH-6	
		Amp.	Phase	Amp.	Phase	Amp.	Phase	Amp.	Phase	Amp.	Phase	Amp.	Phase	Amp.	Phase	Amp.	Phase
U- comp.	M2	0.93	0.93	0.92	0.88	0.85	0.91	0.88	0.94	0.83	0.93	0.99	0.98	0.97	0.92	0.67	0.91
	S2	0.92	0.94	0.89	0.91	0.88	0.89	0.86	0.91	0.84	0.87	0.95	0.94	0.99	0.97	0.67	0.84
	K1	0.81	0.98	0.86	0.91	0.77	0.72	0.87	0.86	0.98	0.99	0.90	0.97	0.76	0.90	0.95	0.76
	01	0.99	0.99	0.10	0.90	0.80	0.69	0.78	0.89	0.73	0.96	0.90	0.92	0.50	0.99	0.68	0.70
V- comp.	M2	0.94	0.94	0.97	0.96	0.89	0.95	0.94	0.90	0.87	0.93	0.95	0.98	0.90	0.98	0.63	0.93
	S2	0.97	0.95	0.92	0.94	0.92	0.87	0.97	0.90	0.63	0.87	0.88	0.94	0.86	0.97	0.64	0.87
	K1	0.36	0.98	0.84	0.99	0.49	0.54	0.92	0.82	0.99	0.98	0.91	0.98	0.63	0.91	0.31	0.71
	01	0.35	0.99	0.15	0.84	0.59	0.58	0.80	0.78	0.97	0.99	0.89	0.99	0.84	0.90	0.67	0.69

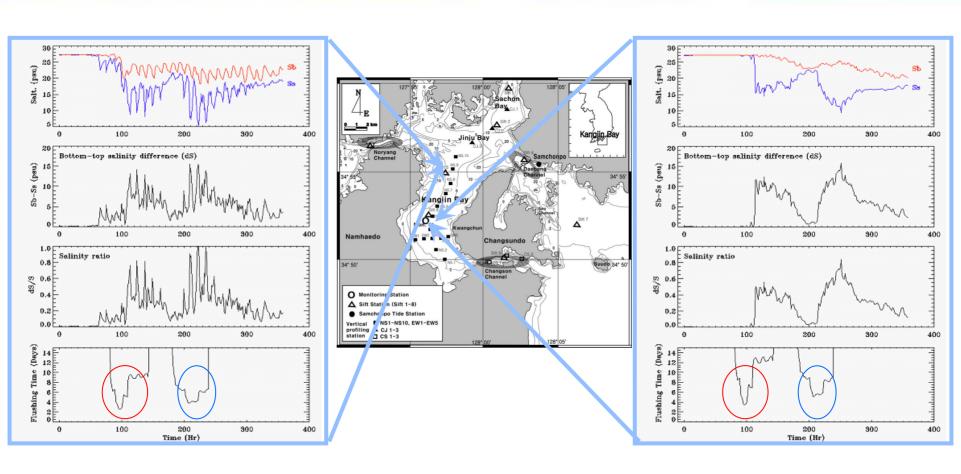
Ţidal Elev.	•	bs.) Vs Results	NORI (Obs.) Vs Model Results Samcheonpo				
(1-R.Error)	K.	J-1					
	Amp.	Phase	Amp.	Phase			
M2	0.94	0.95	0.97	0.96			
S2	0.91	0.98	0.92	0.99			
K1	0.89	0.96	0.91	0.96			
01	0.98	0.92	0.98	0.71			

PICES 17th Annual Meeting


Model Calibration & Verification (Salinity and Sigma-t)

Model performance is highly satisfactory !!!


PICES 17th Annual Meeting


Model Results (Salinity)

Net Volume Transports Variation

(after dam discharge)

1st peak discharge (3,500 m³/sec) : 4.2 days 2nd peak discharge (2,800 m³/sec) : 5.7 days

- To understand the Circulation of Kangjin Bay by using numerical model
- Model results are found to compare well with the Obs. Data

Surface salinity

- 1st peak discharge → 15 (psu)
- 2nd peak discharge → 10 (psu)

Flushing time

- 1st peak discharge (3,500 m³/sec): 4.2 days
- 2nd peak discharge (2,800 m³/sec) : 5.7 days

3 channels are very narrow: bottle-neck effect

- Large amount dam discharge in the summer season
- → Increase of the volume of traffic into bay
- → Thick fresh water covers sea water surface for a long time
- → Stratification between surface & bottom by strong density current
- → Ecosystem will be seriously affected by fresh water

Thank you