Interannual Variations of sea ice in the Pacific side of the Arctic and its relation with the Pacific Inflow

Jie Su (E-mail: sujie@ouc.edu.cn)
Dong Xu, Shujiang Li, and Jinping Zhao

Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao
2008.10 Dalian
Northern Hemisphere Extent Anomalies Sep 2008

1979-2000 mean = 7.0 million sq km

slope = -11.1(+/-3.3) % per decade

http://www-nsidc.colorado.edu/data/seaice_index/n_plot.html

Jie Su
PICES2008, Dalian
Ice Area (1978.11-2007.12)

Monthly data from NSIDC

PICES2008, Dalian
Comparison of yearly minimum ice extent in Arctic Ocean

solid: 1979-2000; dash: 2005
What we want to know and understand:

- What’s the special features of the sea ice inter-annual variation in Pacific side of Arctic (Total four regions; Separate regions)
 - Spatial distribution of variational trend
 - Abrupt test
 - Periodicity

- Links to AO and PDO
- Links to the Pacific Inflow

Jie Su
Distribution of sea ice concentration trend (1979-2007)

March

September

Data from Met Office Haddley Center’s HadISST1.1 (1871.01-2007.12), 1×1;
We use 1979.01-2007.12)

Jie Su

PICES2008, Dalian
Jie Su
PICES 2008, Dalian

Bering Sea: Apr. (Jan.-Apr.)

The fact

The threshold

Abrupt change test
Abrupt change test

The fact
The threshold

Beaufort Sea

East Siberian Sea

Jie Su
Periodicity

Sea ice area abnormal

- Ice area (10^5km^2)
- 1980-2005

- Total
- Chukchi
- Bering
- Beaufort
- East Siberian
Filter the seasonal signal and subtract the trend

Periodicity: 18 months lowpass
Whole Arctic

Total Four Regions

Monthly mean after filter

Jie Su

PICES2008, Dalian
Is there any link to AO and PDO?

Figure 4. Regimes of surface currents and ice drift in the Arctic Ocean redrawn from Sokolov [1962]. (a) Type A circulation, corresponding to prevailing Arctic High atmospheric pressure; (b) Type B circulation, corresponding to prevailing Icelandic Low atmospheric pressure. Numbered features are 1, Beaufort Gyre; 2, Transarctic Drift Current; 3, Laptev Sea cyclonic circulation; 4, Barents Sea currents; 5, East Siberian Sea circulation; and 6, Kara Sea coastal flow.
The opinion of AO connection and two regimes theory can't explain this!

Jie Su

PICES2008, Dalian
Total four regions monthly sea ice area Fitting

Rate: \(-0.10 \times 10^4 \text{km}^2/\text{year}\)

Total four regions Fitting monthly sea ice area subtract trend
A parameter to represent Pacific Inflow’s intensity

Accumulated heat: \(Q_t \)

\[
Q_t = \sum w_i T_i S_i
\]

\[
w_i = \begin{cases}
0 & T_i < T_{\text{threshold}} \\
1 & T_i \geq T_{\text{threshold}}
\end{cases}
\]

\(S_i \): area of a grid, \(T_{\text{threshold}} = -1.0 ^\circ\text{C} \)
conclusion

- In summer, Sea ice concentration decreased more significant in Pacific side of Arctic. Except Bering Sea, sea ice area has significant interannual variation during Aug.-Oct.
- The four regional sea don’t share the same interannual change in the trend as well as in the periodicity.
- There is a abrupt (change, shift) around 1997 in Chukchi Sea, Bering Sea and East Siberian Sea.
- The two regimes theory of AO is difficult to explain interannual variation of sea ice area, while PDO index matches with the filtered sea ice area series with 2-4 years lag.
- A parameter Qt is defined to represent the strength of Pacific inflow. Qt in Bering sea matches well with sea ice area of Chukchi Sea during Jun.-Nov. Qt in North Pacific shows earlier and earlier warm in a year cycle these years.
Thank you!