

Present and Future Upwelling off the Entrance to Juan de Fuca Strait

Mike Foreman¹, Wendy Callendar¹², Amy MacFadyen³, Barbara Hickey³, Bill Merryfield⁴, Badal Pal⁴, Richard Thomson¹, Emanuele Di Lorenzo⁵

¹Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, Canada
² School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada
³School of Oceanography, University of Washington, Seattle, USA
⁴Canadian Centre for Climate Modelling and Analysis, Victoria, Canada
⁵School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, USA

The Region of Interest

Courtesy of Rick Thomson

Sept 2005 salinity at 5m depth

Juan de Fuca (Tully) Eddy

- summer upwelling feature off the entrance to Juan de Fuca Strait
- Not classical upwelling, as off Washington, Oregon, California
- comprised of nutrient-rich California
 Undercurrent water (Freeland & Denman,
 1982) that moves up the Juan de Fuca and
 Tully Canyons onto the shelf
- Makes the SW Vancouver Island & northern Washington shelves one of most productive fishing regions in the NE Pacific (Ware & Thomson, 2005)

Background Physical Oceanography

- > Strong tidal, estuarine, & winddriven flows in Juan de Fuca Strait
- Estuarine flow primarily from Fraser River
- > Summer upwelling winds

Courtesy of Rick Thomson

Physical Modelling (ROMS)

Objective:

> What forcing causes eddy generation & what are the specific dynamics?

Model details:

- > Stretched grid: 1 to 5 km
- > Temperature & salinity initial conditions from summer climatology
- Average summer winds from UW MM5 atmospheric model (http://www.atmos.washington.edu/mm5rt/)
- > M₂, S₂, K₁, O₁ tidal forcing
- > Strong TS nudging at JdF boundary to maintain estuarine flows
- Radiation &/or nudging conditions on N,
 S, W boundaries
- > No Columbia River discharge

Average Summer Upwelling Winds (m/s). Interpolated from June-Sept 2003-05 MM5 Data. 8 49 7 48 6 47 Latitude 5 45 3 44 2

Tinis et al. (2006) verified MM5 winds with offshore buoy data

-125

Longitude

-128

-127

-126

-124

-123

Model Experiments

Experiment	Objective	Initial Conditions	Tides	Estuarine Flow	Winds	Duration
A	Baseline run	Summer climatology	yes	yes	yes	60 days
В	Role of winds	Summer climatology	no	yes	yes	60 days
С	Role of tides	Summer climatology	yes	yes	no	60 days
D	Role of estuarine flow	T and S profiles	yes	no	yes	60 days

Baseline Run: Validation

Average (days 46-60) flows & salinity at 0, 35, 100 m depths

Baseline Run: Validation

Mean flows & tides across Juan de Fuca Strait

31.4 49.2 31.2 49 31 48.8 48 A 30.8 30.6 30.4 48 30.2 47.8 47.6 -126.5 -126 Longitude

Average (days 46-60) flows & salinity at 35 m depth

VS Winds but no Tides vs Tides but no Winds

Average (days 46-60) flows & salinity at 35 m depth

VS Winds but no Tides vs Winds & Tides but no Estuarine Flow

Eddy Development: Winds but no Tides

Daily 35m salinity and velocity

Eddy Development: Winds but no Tides

Summary of Present-day Eddy

- Good agreement between summer observations & model
 - Confidence in model dynamics
- Model suggests eddy is generated by enhanced upwelling off Cape Flattery
 - Migrates westward to lie over Tully Canyon
- Eddy generation requires estuarine flow & upwelling winds and/or tides
 - Key = proximity of dense bottom water off Cape Flattery
 - > 200m depth contour only 4km away

MERIS chlorophyll image: June 3, 2003 Courtesy of Jim Gower & Steph King

What is the Future of the Juan de Fuca Eddy under Climate Change?

- Eddy is forced by a combination of winds, tides & estuarine flow
- How will each of them be affected?
 - > Tides no change
 - > Upwelling winds ?
 - > Estuarine flow ?

Changes to the Upwelling Winds

network of 13
offshore buoys
with re-analysis
winds back to
1958 (Faucher et
al., 1999)

- i. Can evaluate climate model winds over observation period
- ii. Then look at climate model projections

Methodology

- 10m winds from 18 global climate model simulations
 - · PCMDI web site
 - · A1B emission scenario
- · Interpolate, or take nearest value, to buoy locations
 - · compare monthly & seasonal averages over period 1976-95
 - · look at projections for 2030-49 and 2080-99

Figure 10.26. Fossil CO_2 CH_4 and SO_2 emissions for six illustrative SRES non-mitigation emission scenarios, their corresponding CO_2 CH_4 and N_2O concentrations, radiative forcing and global mean temperature projections based on an SOM tuned to 19 A OGCMs. The dark shaded areas in the bottom temperature panel represent the mean ± 1 standard deviation for the 19 model tunings. The lighter shaded areas depict the change in this uncertainty range, if carbon cycle readbacks are assumed to be lower or higher than in the medium setting. Mean projections for mid-range carbon cycle assumptions for the six illustrative SRES scenarios are shown as thick coloured lines. Historical emissions (black lines) are shown for fossil and industrial CO_2 (Martand et al., 2005), for SO_2 (van Aardenne et al., 2001) and for CH_4 (van Aardenne et al., 2001, adjusted to Olivier and Berdowski, 2001), Observed CO_2 CH_4 and N_2O concentrations (black lines) are as presented in Chapter 6. Global mean temperature results from the SCM for antinopogenic and natural forcing compare favourably with 20th-century observations (black line) as shown in the lower left panel (Folland et al., 2001; Jones et al., 2001; Jones and Moberg, 2003).

1976-95 Evaluation of Ensemble Monthly Averages

- · Seasonal direction changes captured reasonably well
- ·Near offshore summer upwelling winds captured reasonably well

1976-95 Summer Evaluation of Individual Models

	CO1					
	ble 1: Climate models used in this study and their atmospheric resolutions					
Symbol	Institution/Model	Atmospheric	Horiz grid dimensions			
		resolution	$lon \times lat$			
a	BCCR/BCM2.0	T63L31	128 x 64			
ь	CCCMA/CGCM3.1(T47)	T47L31	96 x 48			
c	CCCMA/CGCM3.1(T63)	T63L31	128 x 64			
d	CCSR/MIROC3.2(med)	T42L20	128 x 64			
е	CNRM/CM3	T63L45	128 x 64			
f	CSIRO/Mk3.5	T63L18	192 x 96			
g	GFDL/CM2.0	$2.5^{\circ} \times 2^{\circ} L2$	144 x 90			
h	GFDL/CM2.1	$2.5^{\circ} \times 2^{\circ} L24$	144 x 90			
i	GISS/AOM	$4^{\circ} \times 3^{\circ} L12$	90 x 60			
j	GISS/EH	$5^{\circ} \times 4^{\circ} L20$	72 x 46			
k	GISS/ER	$5^{\circ} \times 4^{\circ} L20$	72 x 46			
1	INM/CM3.0	$5^{\circ} \times 4^{\circ} L21$	72 x 45			
m	IPSL/CM4	$2.5^{\circ}\times3.75^{\circ}L19$	96 x 72			
n	MIUB/ECHO-G	T30L19	96 x 48			
o	MPI/ECHAM5	T63L31	192 x 96			
P	MRI/CGCM2.3.2	T42L30	128 x 64			
q	UKMO/HadCM3	$3.75^{\circ} \times 2.5^{\circ} \mathrm{L}19$	96 x 72			

 $1.875^{\circ} \times 1.25^{\circ}L38$

 192×144

UKMO/HadGEM1

Projected Changes at Near offshore Buoys

2030-49

Conclusion:

- Slight changes in upwelling winds
 - · magnitude increase
 - · clockwise rotation

2080-99

Changes to the Estuarine Flow

- Driven mainly by the Fraser River
- Future projections based on CCCMa IPCC AR3 output:
 - · Morrison et al., J. Hydrology, 2002
- Summer discharge will be weaker but temperature will be warmer
 - · Still an estuarine flow in JdF Strait
 - More study required with regional climate model

Summary:

Present Upwelling

- Good agreement between summer observations & model
- Model suggests eddy is generated by enhanced upwelling off Cape Flattery
- Requirements = estuarine flow
 + upwelling winds and/or tides
 - Key = proximity of dense bottom water off Cape Flattery

No tides simulation

Summary

Future Upwelling

- Tides won't change
- Summer upwelling winds slightly stronger
- Estuarine flow might be weaker ?
- Juan de Fuca Eddy should remain but may be weaker

More details in

- Foreman et al., 2008, JGR 113, doi:10.1092/2006JC004082
- Merryfield et al., 2008, submitted to JGR

