Abundance and distribution of micronektonic, mesopelagic fish at the 2007 OECOS observation site (Northwest Pacific)

Tadanori Fujino¹, Yusuke Ito², Hiroki Yasuma² and Kazushi Miyashita²

¹ Japan Sea Fisheries Research Institute
² Laboratory of Marine Echosystem Change Analysis, Hokkaido Uni.
Contents

・Background and Objective

・Material and methods
 (Quantitative echosounder and Framed Midwater Trawl)

・Results
 — Vertical distribution
 — Dominant mesopelagic micronekton fish appeared
 — Density of the dominant species

・Discussion
 — Comparison of abundance with other reports
 — Vertical distribution of micronekton and their prey organism

・Summary
Background and Objective 1

Micronektonic mesopelagic fish role in the Marine Ecosystem

- Zooplankton feeder
- Prey organism for fish, marine mammal
- Huge biomass
- Conduct Diurnal Vertical Migration (DVM)

→ Important material transporter in the open ocean
Background and Objective 2

~Northwestern Pacific~

Intense study on zooplankton and ocean environment conducted around Site H

→Information of the next tropic level:
 mesopelagic micronekton fish lacking

Objective

→Quantify the density and vertical distribution
→Examine their feature of distribution during the blooming
Material and methods - Acoustic survey of the OECOS west

Quantitative Echosounder - FQ80 38kHz

R.V. Hakuhou

“A-Line”

Acoustic backscattering (dB)

2007/3/9 ~ 3/15
2007/4/5 ~ 5/1

Mar. April. off Kushiro, Hokkaido

Framed Midwater trawl (4m × 4m)
Material and methods: Framed Midwater Trawl (FMT) for biological sampling

Fixed opening. Data logger attached to measure the flow velocity at the mouth.

* Problem of net avoidance → Under estimation
Acoustic estimation several to several tens higher value (Gjøsæter 1984)
Material and methods: Quantitative echosounder

Quantitative echosounder
FQ80 38kHz

~Basic of density estimation~

Back scattering per cubic meter

Density of the Target fish

Back scattering per fish

● Obtain continual information of the vertical distribution

* For interpretation;

What mainly contributes to the acoustic backscattering?

How much is the backscattering per fish?
Results - Vertical distribution pattern observed on the echogram

4.7 Day

4.7 Night

4.29 Day

4.29 Night
Results - Vertical distribution pattern observed on the echogram

- Echoes observed deeper than 100m.
- Pattern changed, though obvious diurnal pattern was not observed.
Results - Vertical distribution pattern observed on the echogram

- Echoes observed deeper than 100m.
- Pattern changed, though obvious diurnal pattern was not observed.

Daytime mean acoustic backscattering strength
(for data available on St.5 6,7,8,9,10,11,12,13,16,26,29,30/Apr 1/May)

100-200m -82.2 ± 3.7 dB
200-300m -78.1 ± 2.5 dB
300-400m -75.1 ± 1.6 dB
Results - Biological Sampling

Most dominant species

Day 11 tow Depth 136-410m Night 9 tow Depth 0-417m

Dominant species: *Diaphus theta, Stenobrachius leucopsarus*

| Numerical proportion of *D. theta* and *S. leucopsarus* to the total catch number |
|---------------------------------|-----------------|
| Day | Mean 71.5% (38.3-100%) | Night | Mean 57.7% (23.8-81.8%) |

![Graph showing depth and sampling ID for day and night](image-url)

Depth sampled *Diaphus theta* and *Stenobrachius leucopsarus*
Results-Biological sampling

Other dominant species

Lipolagus ochotensis, Leuroglossus schmidti, Gonostama gracile

→ Numerical proportion was high in some sampling, however, proportion in weight was small

Ex.) Sampling ID F030 (Day)
 Lipolagus ochotensis in number 41.3% → in weight 15.0%
 Sampling ID F031 (Night)
 Lipolagus ochotensis in number 68.9% → in weight 32.1%

![Mean SL 47.4mm BW 0.7g Lipolagus ochotensis](Image)

![Mean SL 36.8mm BW 0.3g Leuroglossus schmidti](Image)

![Mean SL 74.2mm BW 1.4g Gonostama gracile](Image)

Number of cephalopod was low
Results-Biological sampling

Size of the most dominant myctophid species

Diaphus theta

- **Total mean**
 - Mean standard length: 67.3mm
 - BW: 5.1g

Stenobrachius leucopsarus

- **Total mean**
 - Mean standard length: 50.3mm
 - BW: 2.3g
Results-Density estimation

From biological sampling;

Diaphus theta, Stenobrachius leucopsarus are the most dominant species.

From acoustic point of view;

- Dominant species in size has must have a great contribution.
- *D. theta* carries swimbladder, which has a large contribution to the acoustic scattering.

→ Acoustic data most likely reflects the density of the dominant myctophid species

- Acoustic back scattering strength of *D. theta* and *S. leucopsar* is investigated by Yasuma et al. (2006) and Yasuma et al. (2003).
Results-Density estimation

Considering *D. theta*, *S. leucopsaratus* contributes most of the acoustic scattering,

Daytime 100-400m depth interval
Mean backscattering strength per 1 square meter = -52.8 dB
D. theta Mean target strength = -56.6 dB (SL 67.3 mm)
S. leucopsaratus Mean target strength = -75.4 dB (SL 50.3 mm)

Mean density per 1 square meter (100-400m);

D. theta 5.4 g/m²
S. leucopsaratus 1.5 g/m²
Discussion - Comparison of density with other reports

~Other reports of density derived from Acoustic Methods~

April (Present study)
- *D. theta* 5.4 g/m² (Mean 6.3cm 4.2g)
- *S. leucopsarus* 1.5 g/m² (Mean 5.0cm 2.3g)

Cost of Atka Island - East Hokkaido
- February (Yasuma 2004)
 - *S. leucopsarus* 55.5 – 132.6 g/m² (Mean 8.5cm 10.1g)

Cost of East Hokkaido
- January (Yasuma 2004)
 - *D. theta* 35.8 g/m² (Mean 6.3cm 4.2g)

> Relatively low abundance at the OECOS west survey point
Discussion - Comparison of density with other reports

Possible reason of the relatively low abundance

- Regional difference between the shelf slope and open ocean
- Effect of the Spawning migration (Subarctic → Transition region)

<Spawning season>

D. theta: Late March ~ Early September, Peek in May ~ July

 Moku et al. (2003)

S. leucopsarus: February ~ March

 Tanimata (2008)
Discussion - Comparison of density with other reports

Possible reason of the relatively low abundance

- Regional difference between the shelf slope and open ocean
- Effect of the Spawning migration (Subarctic → Transition region)

Schematic of migration of *D. theta* by Moku et al. (2002)
Discussion - Vertical distribution

Watanabe et al. 1999 off Tohoku (Northwestern Pacific) in July

D. theta

Daytime 300-500m, Nighttime 20-100m (Midwater migrants)

S. Leucopsarus

Daytime 400-700m, Nighttime 20-200m / 400-700m (Semi-migrants)

In this study; *D. theta* and *S. Leucopsarus* was caught

Daytime 136-410m, Nighttime 0-417m

- Shallower Swimming depth
- No obvious diurnal vertical migration
Discussion - Vertical distribution

Stomach Content – *D. theta* (Sampling range 150m / 250m)

Yamaguchi (in prep.)
Discussion - Vertical distribution

Stomach Content

- **Major prey organisms** (of *D. theta*) has a shallower swimming depth at the Blooming Seasons.
- **Size**:
 - *Metridia pacifica*: 2.0-3.5 mm
 - *Metridia okhotensis*: 4.5-4.8 mm
 - *Eucalanus bungii*: 4.8-8.0 mm
 - *Euphausiids*: 13-20 mm

Fig. Monthly plankton biomass on Site H by depth (0-150m, 150-500m)
Discussion - Vertical distribution

Stomach Content

- **Major prey organisms** (of *D. theta*) has a shallower swimming depth at the Blooming Seasons.

Size:
- *Metridia pacifica*: 2.0-3.5 mm
- *Metridia okhotensis*: 4.5-4.8 mm
- *Eucalanus bungii*: 4.8-8.0 mm
- *Euphausiids*: 13-20 mm

- **Shift of the biomass to shallower depth in April (to 0-150m)**

Fig. Monthly plankton biomass on Site H by depth (0-150m, 150-500m)

Composition by Depth (0-150, 150-500 m):
- 3.0-4.0 mm
- >4.0mm

Biomass Composition (%):
- 0-150 m
- 150-500 m

Ohgi and Yamaguchi (in prep.)
Discussion - Vertical distribution

Stomach Content

Mesopelagic fish may have followed the characteristic vertical distribution of their prey.

Fig. Monthly plankton biomass on Site H by depth (0-150m, 150-500m)
Summary: Mesopelagic micronekton on the Northwestern pacific (open ocean) at the Blooming season

- Most dominant species: *D. theta / S. leucopsarbus*

- **Density estimation** (100-400m Day) by acoustic method:
 - *D. theta* 5.4 g/m² (Mean 6.3cm 4.2g)
 - *S. leucopsarbus* 1.5 g/m² (Mean 5.0cm 2.3g)

 →reasonable value considering the location (open ocean) and possible effect of the spawning migration to the subarctic transition zone.

- **Relatively shallow swimming depth,**
 - no obvious diurnal vertical migration

 →Effect by the zooplankton (prey organism) which has a shallow swimming depth at the blooming season (Obvious effect from the lower tropic level)
Acknowledgement

We thank all the crew and people cooperated to our survey. Also we are grateful to Dr. Y. Tain and H. Kidokoro (Japan Sea Fisheries Research Institute) for assistance to attend this meeting.
Information!

Mesopelagic fish “SASHIMI”

EATABLE! Try once!

1. Select a large fresh *D. theta*

2. Dress with great care!

3. Serve on a dish and pour some Soysauce!

Soft texture, but tastes not so different from a pelagic fish!
Other species

Stenobrachius nannochir

Protomyctophum thompsoni

Chauliodus sloani
Density estimation by acoustics and FMT

Acoustic estimation is larger than FMT estimated density for

D. Theta 4.3 ± 3.3 S. leucopsarus 4.6 ± 3.7
Fluctuations of the backscattering

Mean SV
-73.3dB
-80.9dB
Mean SV

March
April

200-300m March ≡ April
300-400m March > April

MannWhitney U test
Relationship with the blooming

Acoustic backscattering

Chlorophyll

Mean density of depth
0, 5, 10, 20, 30, 40, 50, 75, 100, 150 m

April