

Are general mechanisms found behind regime-shifts across marine ecosystems?

Niiranen, S.^{1,2}, Blenckner, T.¹ and Biggs, R.³

- ¹Baltic Nest Institute, Stockholm Resilience Centre, Stockholm University
- ²Department of Systems Ecology, Stockholm University
- ³Stockholm Resilience Centre, Stockholm University

Sendai, April 2010

What is an ecosystem regime shift?

- 1. Sudden (non-linear) response
- 2. affects several TLs
- 3. changes system function→ hysteresis

Importance

- Shifts affect global ecological and economical resources
 - e.g. unexpected changes in commercial fish stocks induced by marine regime shifts
- Changes in ecosystem state affect success of different management options
- Can carefully targeted ecosystem based management mitigate/prevent climate driven shifts?

Marine regime shift detection

- Detection methods used:
 - Changes in principal components (PCA)
 - Sequential- t-test analysis (STARS, Rodionov 2004)
 - Correlation analysis and F-test
 - Moving window boundary analysis
 - Chronological clustering
 - Change in means, t-test
 - Inverse modelling
- Answers the questions when and what.

Regime shift in the Central Baltic Proper

Map modified from: http://www.world-map-interactive.info/images/world-map/world-pics/world-map.gif

Stockholm Resilience Centre
Research for Governance of Social-Ecological Systems

Feedback mechanisms

- Mechanisms either related to trophic cascades
 - competition (incl. invasive species) (many systems)
 - predator-prey relations (many systems)
 - inverse predation (Baltic Sea)
 - schooling (within TL) (Cury and Shannon, 2004)
- And/Or feedback to the environment
 - Eutrophication induced hypoxia (e.g. Baltic Sea, Black Sea, Chesapeake Bay)
 - → internal nutrient loading
 - → decreased fish reproduction

Multiple drivers

- Regarding CC important to know if multiple drivers are:
 - 1) required to cause change
 - 2) cause more severe change
 - 3) erode system resilience
- Difficult to identify the effect of a single driver as $\frac{1+1}{2}$.
- Comparative systems with similar climate, different response (e.g. Japan/East Sea, Benguela)
- MPAs

Conclusions

- Multiple drivers, but late 1980s climate induced shift detected widely.
- Now <u>what</u> and mostly <u>when</u> are addressed.

Next how!

- ecosystem indices and their shifts (e.g. Tian et al. 2006)
- Combination of modelling, statistics and experiments needed

Thank you

The study has been carried out as part of the BONUS-project ECOSUPPORT www.baltex-research.eu/ecosupport

Organisers of the "Climate Change Effects on Fish and Fisheries" are acknowledged for financial support.

e-mail: susa.niiranen@stockholmresilience.su.se

web: www.stockholmresilience.su.se

