Broadening stakeholder involvement in fisheries research through the development of cooperative research initiatives in Korean (and Alaskan) fisheries

Dr. Steven Barbeaux
Alaska Fisheries Science Center, NOAA

Dr. Jae Bong Lee
Dokdo Fisheries Research Station, NFRDI
Global ocean monitoring system
Filling in the data gaps
Towards the Development of a Low-cost Cooperative Ocean Monitoring Network

- Share expertise on cooperative research technology and techniques among US and ROK researchers

- Explore possible extensions of US cooperative projects to Korea and Korean cooperative projects to US

- Examine the feasibility of a joint US/ROK workshop on cooperative monitoring

- Consult between US and ROK researchers on the development of a joint US/ROK long-term ocean monitoring network based on cooperative monitoring programs
Towards the Development of a Low-cost Cooperative Ocean Monitoring Network

- Dr. Steven Barbeaux
 - Eastern Coast, Korea
 - 7-20 July 2013

- Dr. Keith Bosley
 - Pusan and Pohang, Korea
 - 11-17 May 2014
Towards the development of a low-cost cooperative ocean monitoring network

- Dr. Jae-Bong Lee, Dr. Young-Min Choi, and Dr. Young-Yull Chun
 - Seattle, Washington
 - 21-27 July 2013

- Dr. Jae-Bong Lee, Dr. Young-Min Choi
 - Seattle and Tacoma, Washington
 - 18-20 August 2014
 - Newport, Oregon
 - 20-23 August 2014
Applications of cooperative monitoring

- **Fishing effort standardization**
 - Fixed gear – Set number and soak duration
 - Active gear – Haul number and fishing duration

- **Physical oceanographic data**
 - Surface and at depth temperature and salinity
 - Bathymetry and bottom type from acoustics

- **Animal density and seasonal distribution**
 - Acoustic density over time and space
Fishing effort standardization (2013)

Gill net soak time

Seine tow number

Tinytag Gemini Data Loggers
Physical oceanographic data (Korea)

- Oceanographic data from the commercial deep sea crab (2010-present)
 - Investigate oceanographic triggers for crab migration
 - Red snow crab (*Chinoecetes japonicus*) fishery
Oceanographic data from the commercial deep-sea crab fishery

Korean red snow crab movement?

@1800m deep
Physical oceanographic data (USA)

- Temperature and depth recorders on commercial trawlers (2007-2008)
 - Walleye pollock (*Gadus chalcogrammus*) fishery
 - Temperature and fishing depth effects on salmon bycatch
- Acoustic data from commercial longliners in the Aleutian Islands (2014)
 - Aleutian Islands sablefish (*Anoplopoma fimbria*) and halibut (*Hippoglossus stenolepis*) fishery
 - Bathymetry, bottom typing,
- Temperature and depth recorders on commercial longliners (Proposed)
 - Greenland turbot (*Reinhardtius hippoglossoides*) fishery
 - Oceanographic data collection at the shelf-edge

Gadus chalcogrammus
Reinhardtius hippoglossoides
Hippoglossus stenolepis
Anoplopoma fimbria
Temperature and depth recorders on commercial trawlers

• Seabird SBE 39 and cases (US$1900 each)
• Deployed on 18 vessels
• Attached to trawl headrope
• High sampling rate (up to 3 sec.)
• High accuracy (±0.002°C and ±0.1% pressure)

High maintenance!
Spatial distribution of temperature depth recorder data

- 1930 temperature and depth profiles

Winter 2008 – A Season

Summer 2008 – B Season
Chinook salmon bycatch in the pollock fishery GAM analysis

Effects on pollock catch abundance

Effects on probability of Chinook salmon in pollock trawl
The next step?

- **TDR archival tags and cases (~US$230-$990 each)**
 - Lower accuracy (± 0.1°C and ± 1% pressure)
 - High sampling rate (up to 1 sec)
 - Low maintenance!

Star Oddi or Lotek

Tinytag- Gemini Data Loggers
Acoustic data from commercial longliners in the far Western Aleutian Islands

- Bathymetry, bottom typing, and seasonal ecological partitioning in the far western Aleutian Islands
Temperature and depth recorders on commercial longliners

- Oceanographic data collection at the shelf-edge
 - Vessel visit in Seattle on board the FV Baranof with Korean researchers
 - Sensors to be deployed in Winter 2014

![Diagram of Alaska with 800-1200 M range and a map of the FV Baranof in Seattle.](image)
Animal density and seasonal distribution

- **Opportunistic acoustic data collection (2002-Present)**
 - Collect acoustic data from trawlers during normal operations
 - Simrad ES-60 Echosounders
 - 250GB hard drives (US$69)
 - ~35,000km per year on 2 to 12 vessels
Visualizations of pollock aggregations from opportunistic acoustic data

Day

Night
Visualizations of pollock aggregations and fishery interaction

- Integrates diverse data sources
 - Acoustic
 - On-board observer
 - VMS
Leslie Model: Local Biomass and Fishing Exploitation Rates
Proposed Korean cooperative projects

- Acoustic data collection commercial fishing vessels (Korea)
 - Chub mackerel (*Scomber japonicus*) large purse-seine
 - Chub mackerel migration and population dynamics
 - Mackerel vs. tuna identification
 - Squid (*Loligo sp.*) Jig
 - Squid seasonal distribution
 - Eastern Danish Seine
 - Sandfish (*Arctoscopus japonicus*) seasonal migration and population dynamics
Large purse-seine fisheries opportunistic acoustic data
Squid jig fisheries opportunistic acoustic data

- Squid seasonal distribution
- Vessel visit in Gangneung to evaluate technical feasibility
Eastern Danish seine fisheries opportunistic acoustic data

- Sandfish (*Arctoscopus japonicus*) seasonal migration and population dynamics
- Eastern Danish Seine Association Chairman
- Vessel visit in Kampo to evaluate technical feasibility
Commonalities

- Fishermen and other stakeholders in both countries are eager to participate in cooperative monitoring and research.

- Engaging stakeholders in data collection improves communication across all channels and increases trust in the science.

- Clear-cut and reasonable objectives for both the researchers and the data collecting stakeholder improves participation.

- Managing expectations of the fishers and upper management is essential.
Key cultural differences

- **Korean Management**
 - Essential to have a very clear and rigid plan of action prior to involving stakeholders or upper management.
 - Small missteps or mistakes are failures that can kill projects and potentially damage careers.

- **USA Management**
 - Projects are often designed as adaptive experiments sometimes without knowing if the objectives are attainable.
 - Small missteps and mistakes are considered learning opportunities that are essential to the evolution of a project and a scientist.
Publications

[http://www.nmfs.noaa.gov/podcasts/2013/05/eye_on_pollock.html](http://www.nmfs.noaa.gov/podcasts/2013/05/eye_on_pollock.html#.UbimzvnuAg)
Oceanographic data recording from ferries

Ferry Temp. & Salinity

Satellite SST

- Global Ocean Observing System (GOOS) Project
- Dr. Jong-Hwa Park