CLIOTOP 3rd Symposium
(Climate Impacts On Top Ocean Predators)

• Abstracts - close March 31

• Climate and pelagic species
 – Special issue – just out
 • 26 papers from 2nd symposium (2013)
Adaptation in pelagic fisheries (south-east Australia)

Alistair Hobday, Jason Hartog, Paige Eveson, Claire Spillman, Gretta Pecl, Stewart Frusher
Adaptation Literature (Tasmania) (Lyth et al 2015)
South-east Australia - Part 2

• Part 1 - coastal south-east Australia fisheries
 – Coastal climate change patterns
 – Adaptation options
 • Abalone
 • Rock lobster
 • Salmon
 • Oysters
 • HABS
 • Ecosystems

• What about pelagic species and fisheries?
Pelagic species

- Pelagic species - Tuna, billfish, sharks

- Pelagic fisheries - Longline, purse seine, pole and line (recreational)

- Historical - Evidence for change
 - Physical change – strong signals (Hobday and Pecl, 2014)
 - East Australia current
 - Biological range changes – weak inference (Robinson et al 2015a)

- Future
 - Physical – strong
 - Biological – yes, pelagic species projected to change distribution
 - Hobday 2010
 - Hartog et al 2011
 - Dell et al 2015
 - Robinson et al 2015b
Adaptation Challenges - pelagic fisheries

1. Perceptions of the future - difficult

2. Detecting historical trends – hard
 – Despite wide range of data

3. Fisheries have always adapted – yes, but...

4. Projecting change –
 – Climate time scales too long for many end users
Challenge 1: Detecting historical change

Challenge 2 – Visioning the future Coastal ecosystems

Hoegh-Guldberg et al 2007
Challenge 2 – Visioning the future
Pelagic ecosystems

2015

2050
Challenge 3 - Humans think they are resilient….

Fishers: “we have always adapted to changes in the past”

Jones & Mearns 2005
Recent marine extremes suggest otherwise

- Marine heat wave - Western Australia 2011
- Flooding and cyclone - Queensland 2011
- Abnormally warm summer - Tasmania 2012

Hodgkinson et al 2014
The future will be different...

- Climate change is leading to a future where past experience is of reduced value.

- Past patterns will not be repeated: novel combinations of physics, chemistry, and biology

- Need to make decisions that are generally ok even if the details change, based on the best information available at the time (risk management)
Challenge 4: Projecting changes

- Range changes
- Abundance
- Physiology & phenology
- Productivity of ocean
Habitat distribution – coarse resolution

(IPCC models - Hobday 2010)

11 species in Australian longline fisheries

Year 2100
Habitat distribution – higher resolution

(Hartog et al 2011)

2000’s

2060’s
Habitat distribution - fine scale

2060’s vs present (Dell et al 2015)
Pacific – habitat distribution

Tuna benefits move east

Bell et al 2013. NCC
Linking ecological and social vulnerability

Ecological

Exposure → Sensitivity → Potential Impact → Adaptive Capacity → Ecological Vulnerability

Socioeconomic

Exposure → Sensitivity → Potential Impact → Adaptive Capacity → Socioeconomic Vulnerability

Marshall, Hobday, Marshall, 2013 (Ecosystems)
Linking ecological and social vulnerability

Ecological Vulnerability

Sensitivity

Adaptive Capacity

Potential Impact

Resource Dependency

Potential Impact

Adaptive Capacity

Socioeconomic Vulnerability

Exposure

Socioeconomic

Feedbacks

Marshall, Hobday, Marshall, 2013 (Ecosystems)
Generating Adaptation Options

Marshall, Hobday, Marshall, 2013 (Ecosystems)
Adaptation options

• Autonomous
 – Fish – distribution, phenology

• Autonomous and directed adaptation
 – Funding agencies recognise issues
 • Targeting research (NCCARF NARP projects)
 – Scientists
 • Modelling tools that address climate change
 • Recognition of status quo as insufficient (Harvest strategies, stock assessments)
 – Fishers
 • Fishing regions and mix of species
 • Use of environmental forecasts
 – Managers
 • Changing assessment baselines (stock assessment)
 • Use of environmental forecasts
 – Policy makers
 • Jurisdictional agreements – shifting stocks
Adaptation options - plenty

• Economic development
 – Lose-Win
 – Win-Win

• Food security (fish)
 – W-W
 – L-W

• Livelihoods (employment)
 – W-W
 – L-W
How does this translate to action?

<table>
<thead>
<tr>
<th></th>
<th>Awareness (information)</th>
<th>Options and planning</th>
<th>Long-term actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelagic fish and fisheries</td>
<td>Medium</td>
<td>yes</td>
<td>None</td>
</tr>
</tbody>
</table>
Translating impact to adaptation

Strategy 1 – avoid future impacts (coming decades)
1. Discover some historical impacts
2. Make some future projections
3. Develop some adaptation options
4. Implement with stakeholders (too soon?) <-- Barriers analysis

But, balance the portfolio (it’s about risk management)

Strategy 2 – learn, based on current issues (CC already here)
1. Consider relevant time scales
2. Understand decision context
3. Co-develop forward looking solutions
4. Implement with stakeholders
H₀: Thinking more about the future leads to better long term skills?

Long-term planning ability

Skill in short term decisions (e.g. using seasonal forecasts)

Testing planned
Relevant time scales – pelagic fisheries

- Relevant time scales:
 - 7-10 days
 - Weeks to months
 - Decades to centuries

- Decision types:
 - Weather forecasting
 - Seasonal forecasting
 - Climate projection

- Examples:
 - Port to use
 - Quota need
 - Labour needs
 - Equipment purchase
 - Shipping of catch

- Hobday et al, in press
Seasonal forecasting model - POAMA

Predictive Ocean Atmosphere Model for Australia

Global dynamical coupled ensemble ocean-atmosphere and data assimilation seasonal prediction system

- Forecasts out to 9 months
- Weekly to seasonal multi-model predictions
- Ocean and atmosphere products available
- 33 member ensemble
- Probabilistic forecasts
- Run operationally x2 weekly

http://poama.bom.gov.au

Who receives seasonal forecasts?

Environment and habitat based projections

Prawns – Queensland farmers
- rainfall & air temperature
- Spillman et al. (2015)

Tuna – Eastern Australian fishery managers
- Temperature at depth
- Hobday et al (2010; 2011)

Tuna – Great Australian Bight fishers
- Sea surface temperature
- Eveson et al. in review

Salmon – Companies
- Sea surface temperature
- Spillman & Hobday (2014)
Southern bluefin tuna - pelagic fisheries

- Purse-seine
- Longline
East coast - Seasonal Habitat Prediction

- Offers both managers and fishers the potential to plan for upcoming spatial restrictions, and strategically modify their fishing activities.

Hobday et al 2011
Great Australia Bight – economic efficiency

Issued 22 Feb 2015

Fortnight 1:
22 Feb – 7 Mar

Fortnight 2:
8 Mar – 21 Mar

Month 1:
March

Month 2:
April
Website

Delivery of information – targeted

www.cmar.csiro.au/gab-forecasts

Adaptation?

In the first year
10 major fishing companies
 • All used website
8 used in decision-making
 • 6 made different decision
 • 2 made “do nothing different”
 • (when and where to fish)
 • (economic benefits)
What constrained that response and what should we learn about directions to work towards to enhance adaptive capacity?

• Appropriate time scales – seasonal forecasting
 – Adaptation to variability (<10 years)
 – Does “teach” future decision making (probabilistic)

• Identify opportunities
 – e.g. fishing opportunities
 • Single by single species
 – But...is opportunity a “message” or a driver?
Drivers for adaptation

- Risk management, avoid catastrophe or transformation, legal liability
- Loss of goods/services (including personal loss)
- Developments in research and understanding, capacity
- Changes in policy and political environment (includes non-adaptation)
- Community or public pressure, awareness, community attitudes
- Changes in market demand & supply
- Funding and resources
- Past events (eg extremes)
- Moral impetus, intergenerational equity
- Desire to seize new opportunities

Figure 3. Top 10 drivers of climate change adaptation interest and activity as ranked by stakeholder workshop participants.
Summary

- **Seafood adaptation action in Australia**

<table>
<thead>
<tr>
<th></th>
<th>Awareness (information)</th>
<th>Options and planning</th>
<th>Short-term actions</th>
<th>Long-term actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal fisheries – south-east</td>
<td>High</td>
<td>Moderate</td>
<td>Moderate</td>
<td>None</td>
</tr>
<tr>
<td>Pelagic fisheries</td>
<td>Medium</td>
<td>Low-moderate</td>
<td>Low</td>
<td>None</td>
</tr>
<tr>
<td>Aquaculture</td>
<td>Medium</td>
<td>Moderate</td>
<td>Moderate</td>
<td>None</td>
</tr>
<tr>
<td>Coastal fisheries – west coast</td>
<td>Medium</td>
<td>Low-moderate</td>
<td>Low</td>
<td>None</td>
</tr>
<tr>
<td>Coastal fisheries - Northern Australia</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>None</td>
</tr>
</tbody>
</table>
CLIOTOP 3rd Symposium
(Climate Impacts On Top Ocean Predators)

• Abstracts - close March 31

• Climate and pelagic species
 – Special issue – just out
 • 26 papers from 2nd symposium (2013)