

Adaptation to climate variation in a diversified fishery: The West Coast groundfish trawl fishery

Lisa Pfeiffer

Northwest Fisheries Science Center, NOAA Fisheries Seattle, Washington USA

The West Coast groundfish trawl fishery

 26% of all fish (including shellfish) landed on the West Coast of the United States "Two" fisheries

"Non-whiting": over 30 groundfish species and rockfish complexes

"Whiting": Pacific whiting

 Only about 50% of their annual revenue comes from the groundfish fishery

Dungeness crab Pink shrimp Alaska pollock

The West Coast groundfish trawl fishery

- Non-whiting groundfish species are generally longlived, spatially stable
 - Little research and no direct links to climate factors
- Whiting are short-lived, high abundance and highly variable abundance, and migrate from south to north each year
 - Climate does not directly affect fish production, but does impact distribution (Agostini et al. 2006)
- Dungeness crab, shrimp, and Alaska pollock are greatly affected by climate factors, in different ways

The California Current

- Winter conditions:
 - Northward shelf currents, winds from the south, coastal downwelling
 - Summer conditions:
 - Strong southward surface currents, weak bottom currents, coastal upwelling
- "Spring transition" is reflected in coastal sea level measurements, which fall rapidly in the spring

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 4

Dungeness crab

- Northern California, Oregon and Washington
- Fished with pots
- Fishing removes essentially all 4-year old male crabs
- No fishing mortalitystock-recruitment relationship

Dungeness crab & the California Current

Relationship between date of spring transition and t+4 commercial catches Shanks and Roegner, 2007

- Adult population size is determined by success at larval stage
- Early spring transitions are correlated with larval success, and larger adult populations 4 years later
- Season opening based on quantity and shell hardness

Pink (ocean) shrimp

- Northern California, Oregon and Washington
- Fished with trawl gear Lifespan of 3 years; fished at ages 1 and 2
- No fishing mortalitystock-recruitment relationship

Pink shrimp and the California Current

Relationship between April sea level height and recruits Hannah, 1993 and 2011

- Low sea levels in April ("strong"/early spring transition) correlated with increased recruitment
- Hypothesized that late spring transitions would transport larvae northward and onshore, where poor survival expected

How do participants respond to these effects? Hypotheses:

- Large fishable biomass of crab and shrimp (early spring transition in t-4 and t-2) correlated with
 - lower participation and
 - lower % of revenue (for participants) from groundfish.
- Response constrained by the trip-limit regulations in the groundfish fishery until 2011
- Likely to be more responsive under catch share management (2011 forward)

Participation in LE groundfish increases with later spring transition

Participation in LE groundfish increases with larger crab and shrimp harvests and later spring transitions

qfv crab_t_mts -0.051*** 0.020 shrimp t mts -0.028 0.039 price_gf 2.164 1.418 3.963 3.639 0.012** L4.spring_trans 0.005 L2.spring trans 0.003 0.007 7.990*** 5.083*** cons 2.702 1.694 ______ lnsig2u 3.890*** 3.870*** cons 0.167 0.167 1994 1994 Ν

Probability of participation (XT logit)

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 11

Given participation, % of revenue from groundfish increases with later spring transition in t-4

% of revenue from groundfish increases with larger crab and shrimp harvests and later spring transitions

crab_t_mts	-0.608*** 0.073	
shrimp_t_mts	-0.613*** 0.118	
year	0.275	0.102
L4.spring_trans	0.173	0.172 0.138***
L2 spring trans		0.018 0.071***
IZ. SPI III9_CI alls		0.021
_cons	-461.870	-162.467
	347.653	343./31
N 	1701	1701

Using only vessels that *always* participate in the groundfish trawl fishery, effect is somewhat stronger

Using only vessels that always participate in the groundfish trawl fishery:

crab_t_mts	-0.715*** 0.111	
shrimp_t_mts	-0.508***	
year	0.188 0.839***	0.532**
- 4	0.235	0.233
L4.spring_trans		0.199***
L2.spring_trans		0.045
_cons	-1588.927*** 471.078	-1025.354** 467.209
N	462	462

California Current climate change predictions

- Increased upwelling in the summer months driven by wind-stress curl driven by the land-ocean temp gradient (Snyder et al 2003)
- Shift of peak upwelling to later in the year (Barth et al 2007)

Later spring transition

• El Niño associated with delayed and weak upwelling (Bograd et al 2009)

How do catch shares affect predictions?

• Prior to 2011, the groundfish fishery was managed mainly with monthly trip limits

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(Ground	fish				
	Crab					Shr	imp				Crab

• Now, fishermen can "specialize" in groundfish fishing for a limited time of the year

Specialization

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 18

How do catch shares affect predictions?

- Catch shares are often considered to increase flexibility (although among fisheries, it is not clear)
- Expect behavior to be more sensitive to variation in the shrimp and crab fisheries
- More likely to optimally divide time among fisheries as a function of prices and other market conditions
 - Lead to a more "predictable" model of participation and effort allocation?

Future steps

- Model days at sea (effort) and profit per day in each fishery
- Participation model that can predict diversification and revenue/profits depending on climate and TAC conditions
- Whiting/pollock
- Predictability (?) of crab season opening may change the way vessels deal with groundfish quota at the end of the calendar year
- Ocean acidification?

Alaska (Walleye) pollock

- Bering Sea and Aleutian
 Islands of Alaska
- Fished with trawl gear by vessels that target whiting on the West Coast
- Pollock roe (from prespawning fish) is harvested in the winter (Jan-Mar) season

Pollock and Bering Sea temperature regimes

Comparison of egg stage in cold and warm regimes Smart et al, 2012

	(1) Probability of an early trip	(2) Probability of an early trip
Lagged summer SST	2.190** (0.69)	
Lagged fall SST		1.147* (0.47)
TAC (vessel-specific, thousand t)	0.348** (0.10)	0.344* (0.10)
Ratio of roe to surimi prices (average of t and t - 1)	-0.175 (0.24)	-0.562** (0.19)
fotal abundance (million t of age 3+)	-0.254 (0.19)	-0.234 (0.17)
Ice cover index	-0.050 (0.21)	-0.581** (0.10)
Constant	-17.444* (6.25)	-3.652 (3.14)
Observations	176	176
Pscudo-R ²	0.444	0.415

Timing of spring fishing trips

- Bering Sea is characterized by warm and cold temperature regimes
- Peak of egg stage occurs 40 days earlier in warm years
- Harvesters start fishing earlier to obtain peak value roe