Inland sea versus coastal ocean zooplankton response to “The Blob.”

Julie Keister1, Jennifer Fisher2, Ian Perry3, William T. Peterson4, Kelly Young3, Moira Galbraith3, Amanda Winans1, Bethel Lee Herrmann1, Jan Newton1, Wendi Ruef1, John Mickett1

1-University of Washington Oceanography, Seattle
2-Hatfield Marine Science Center, Newport, OR
3-Department of Fisheries and Oceans, Canada
4-NOAA Northwest Fisheries Science Center
Record high temperatures occurred during the Pacific Warm Anomaly, a.k.a. “The Blob”

Developed offshore during winter 2013-14

NANOOS Visualization System:
http://www.nanoos.org/
Summer 2014 – Warm water held offshore by upwelling in summer 2014

July 2014

NANOOS Visualization System:
http://www.nanoos.org/
Dramatically advected onto shelf in Fall 2014 with shift to downwelling.

October 2014

NANOOS Visualization System: http://www.nanoos.org/
Very warm water at >50 m depth on shelf in October.

Cha’ba buoy off La Push, WA
Oregon coast temperatures remained high Fall 2014 through Fall 2016:
Reported biological impacts during the Blob:

- Unprecedented copepod species richness off Oregon (Peterson et al. 2017; Jacobson yesterday)
- Unprecedented negative cold-water copepod anomalies
- Near-record positive warm-water copepod anomalies
- Extremely low juvenile/adult euphausiid biomass

- Massive Cassin’s auklet die offs (J. Parrish)
- Extremely low salmon returns
- Abandoned and starved sea lion pups
- Unprecedented, wide-spread toxic *Pseudo-nitzschia* bloom (Du et al. 2016)
How was this big anomaly reflected in inland sea systems?

Were responses coherent throughout the region?

Nutrients
 ↓
Chlorophyll
 ↓
Zooplankton
 ↓
Salmon
Zooplankton time series:

Strait of Georgia:
Inland Fjord
1995-present
DFO Canada (D. Mackas, I. Perry, et al.)
• 300 m average depth

Puget Sound:
Inland Fjord
2014-present (zooplankton, J. Keister et al.)
1997-present (hydrography, King Count)
Collaborative program
• 200 m average depth

Newport Line:
Continental shelf upwelling system
1996-present
NOAA NWFSC (W. Peterson et al.)
• 65 m depth
Puget Sound: Water column heat content anomalies

<table>
<thead>
<tr>
<th>Month</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Red = higher than expected (> *IQR)
- Black = expected (= *IQR)
- Green = lower than expected (< *IQR)
- Light green = higher than previous measurements
- Gray = no data

*IQR = Interquartile Range (25th – 75th percentiles); n = 17
Oregon coast – Nutrient and Chlorophyll anomalies
Relative to 1997-2018 mean

Nutrient anomalies

Chlorophyll anomalies

NH-5 Surf NO$_2$ + NO$_3$

NH-5 Surf Chl-a
Puget Sound – Nutrient and Chlorophyll anomalies
Relative to 1997-2011 mean

Nutrient anomalies

Chlorophyll anomalies
Zooplankton biomass anomalies: Relative to 2014-2017 mean

Oregon coast – Zooplankton biomass anomalies

Puget Sound – Zooplankton biomass anomalies
Annual cumulative zooplankton biomass:

Oregon Coast

Central Puget Sound
Central Strait of Georgia – zooplankton biomass increase 2014-17

Young et al., Salish Sea Ecosystem Conference, 2018
Coastal salmon that out-migrated in 2014 and 2015 had some of lowest returns on record:

“Juvenile salmon growth was high in all years, 2014-2017.”
(B. Beckman unpub. June IGF-1 data)

```
<table>
<thead>
<tr>
<th>Year</th>
<th>Coho survival</th>
<th>Chinook returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>1999</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2001</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2002</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2003</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>2004</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>2005</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>2006</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>2007</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>2008</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2009</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2010</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>2011</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>2012</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>2013</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2014</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>2015</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>2016</td>
<td>13</td>
<td>—</td>
</tr>
</tbody>
</table>
```

Coho survival and Chinook returns were lower in 2015.
Puget Sound Juvenile Chinook salmon growth and size:
Tended to be higher and less variable in **2015** than **2014**

IGF-1 index of growth for 3 regions:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellingham Bay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Juans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Whidbey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N. Whidbey juvenile salmon size:

Fork length (mm)

- **2014**
- **2015**

Chamberlain et al. 2017

Courtesy of C. Greene et al., NOAA

http://www.fpc.org
Puget Sound Coho salmon survival rate was higher for 2015 out-migrants than 2014:
Puget Sound - salmon prey taxa much higher biomass in warm years:

Prey Field = Decapods + amphipods + ichthyoplankton + euphausiids
Big difference between systems

Mechanisms?

Hypotheses?
H1: Fundamental differences between systems

Deeper, warmer, more stratified system. Circulation limited by sills.

- 2015 drought decreased stratification \rightarrow higher production

Shallower, colder upwelling site. Strongly influenced by water mass advection.

- Upwelling of warmer, less saline deep water, low NO$_3$, increased stratification \rightarrow lower production
Strong evidence for advection-driven changes in California Current zooplankton

Very few unusual species observed in Puget Sound

I go with the flow!
H2: Different temperature optima of resident dominant species?

North Pacific warm-water species

\{ Puget Sound dominants: \\
\quad Calanus pacificus \\
\quad Corycaeus anglicus \\
\quad Paracalanus \\
\quad Pseudocalanus moultoni \}

Boreal cold-water species

\{ Oregon Upwelling dominants: \\
\quad Calanus marshallae \\
\quad Pseudocalanus mimus \\
\quad Acartia longiremis \}

“Typical” Summer SST
Working Hypothesis:

Puget Sound:

Higher temperature → higher growth of resident species, supported by sufficient primary production.

Oregon Coast:

Advection of high temperature, nutrient poor water & oceanic species assemblage.

→ Insufficient primary production, only small species present
Conclusions

During Blob years:

Large regional contrasts in zooplankton observed:
 • Lower zooplankton biomass on continental shelf
 • Higher zooplankton biomass in Puget Sound

Mixed response in salmon:
 • High juvenile growth in both regions during warm years
 • Indication of better survival from Puget Sound rivers in 2015; worse on coast.
 • But...2016-17 returns low in both regions (lag in PS?)

Mechanisms under investigation!

2017 conditions returning to ~normal (at least in Puget Sound).
Partnerships & Funding

Innumerable field crew!
All of the co-authors

Additional data from:
Kim Stark
Gabriela Hannach
Cheryl Morgan
Karen Suchy