TRANSGENERATIONAL DELETERIOUS EFFECTS OF OCEAN ACIDIFICATION ON THE REPRODUCTIVE SUCCESS OF A GAMMARID AMPHIPOD SPECIES

Francisco Borges, Eduardo Sampaio, Cátia Figueiredo, Rui Rosa, Tiago F. Grilo

©Jan Grathwohl

Washington, DC, USA 5th June 2018

GLOBAL CLIMATE CHANGE IS UNEQUIVOCAL...

Continued anthropogenic CO₂ emissions to the atmosphere

Increased oceanic CO₂ uptake (400 μ atm *p*CO₂ -> 900 μ atm *p*CO₂ by 2100)

Disruption of the ocean's carbon chemistry

-700-m ocean heat content (10²² J)

ò

Mean

7.7

1000

1800

1900

Year

2000

-0.6

Global mean sea level (mm)

100

50

-50

-100

Arctic

From Doney et al., 2012

- Oceanic uptake of atmospheric CO₂ has led to progressive acidification (IPCC, 2014)
- \downarrow 0.1 pH units since the Industrial Revolution;
- \uparrow 26% in acidity [H⁺] over the past 150 years;
- \downarrow 0.4 units in the year 2100.
- Acidification could have major impacts on biogenic habitat (e.g., coral reefs, seagrass and oyster beds), food webs (e.g., calcifying organisms), and geochemical cycles

400

300

200

2100

Historical & Projected pH & Dissolved CO2

RESPONSES TO ENVIRONMENTAL STRESS

<u>ACCLIMATION</u>

- Short-term physical and/or
 - behavioural adaptations

Phenotypic plasticity

 Maintenance of individual fitness and ecological performance

LONG-TERM ADAPTATION

 Increase in abundance and reproductive success of resilient genotypes.

Selecting on genetic variability

- Maintaining favorable genotypes
- Shifting the population structure towards a new optimal phenotype

- inherence of non-genetic traits from adults to offspring (i.e. carry-over effects), as a result of exposure to a particular stress factor
- can positively influence offspring performance when exposed to the same conditions as the parental generation

EXAMPLES:

There is a gap of knowledge concerning trans/multigenerational effects of OA in crustacean species, the majority of which focused in copepods

To investigate the transgenerational effects of OA (pCO₂ ~ 900 μatm) on the survival and reproductive traits of *G*.
locusta over two generations (F0 and F1)

- Understanding how survival and reproductive traits may be affected by environmental change, and whether these effects are transmitted throughout subsequent generations, will allow:
 - to infer possible changes in mating and recruitment stemming from CO₂-driven physiological changes;
 - predict the sustainability of natural *G. locusta* populations in a future acidified ocean.

STUDY SPECIES: Gammarus locusta

Gammarus locusta Linnaeus, 1758

- Sub-Order Gammaridae
- Marine euryhaline species
- Coastal and estuarine areas

• Wide geographical distribution from the North Sea up to the Southern Portuguese and Spanish coasts

SAMPLING AND EXPERIMENTAL DESIGN

PHYSICO-CHEMICAL PARAMETERS MONITORING

Generation	Treatment	Temperature (º	Salinity	рН	ТА	pCO ₂ (µatm)
		C)			(µmol/kgSW)	
	С	18.3 ± 1.3	35	8.1±0.1	1932.2 ± 109.8	375.9 ± 67.7
FO	Α	18.4 + 1.4	35	7.7 ± 0.1	1971.5 + 64.3	827.5 + 73.2
	СС	18.8 ± 0.8	35	8.0 ± 0.1	2126.5 ± 112.3	354.2 ± 28.7
F1	AA	18.8 ± 0.6	35	7.7 ± 0.1	2044.1 ± 140.4	825.5 ± 71.5
	AC	18.7 ± 0.6	35	8.0 ± 0.1	2105.7 ± 108.9	366.8 ± 20.5
	CA	18.8 ± 0.6	35	7.7 ± 0.1	1943.6 ± 88.4	803.2 ± 27.8

• SURVIVAL AT ADULTHOOD (30 DAYS, %)

- Survival in F0 declined significantly in acidified conditions, which not occurred in F1
- Survival in cross treatments decreased significantly compared to the control

MATE-GUARDING DURATION

- Exposure to high *p*CO2 produced a significant reduction in mate guarding duration in FO
- In the offspring generation no significant differences were found compared to the control

- REPRODUCTIVE INVESTMENT
 - a) Mean number of eggs

- Parental females under acidification produced significantly more eggs than controls
- In the second generation, production of eggs was reduced

- REPRODUCTIVE INVESTMENT
 - b) Duration of embryonic development

- Embryonic development lasted 10-11 days
- No differences were found between treatments and within generations

REPRODUCTIVE INVESTMENT

c) Fecundity / Number of juveniles

- Number of juveniles did not significantly differ in the first generation between treatments
- Significant decline in F1 fecundity under acidification compared to the control and progenitors
- Negative parental effects in AC (offspring raised in control and whose parents were reared under OA)

• SURVIVAL

 First exposure (initial acclimation – F0) to acidified conditions systematically reduced survival in this amphipod species

• Previous studies:

Hauton et al., 2009; Cardoso et al., 2017 – *Gammarus locusta:* 25 and 21 days exposed to 7.8 pH and 7.6 pH, respectively: survival declined to 65%

 Negative impacts in calcification and metabolism (Kroeker et al., 2010) could result in energy being re-allocated from fitness-enhancing processes to acid-base regulation machinery, as a compensatory response towards hypercapnia (Pörtner et al. 2004)

MATE-GUARDING

• High metabolic costs: males of *Gammarus* sp. have poor energetic conditions due to OA and may be less able to endure the costs associated with precopulatory MG (Plaistow et al. 2003)

• FEMALE REPRODUCTIVE INVESTMENT

 Metabolic costs led to a temporary shift in the allocation of energy that would normally be used for reproduction - i.e. in the female investment on the number of mature oocytes that are deposited as eggs in the brood pouch and, possibly, egg quality (Neuparth et al. 2002)

For further information please see: Borges, F.O., Figueiredo, C., Sampaio, E., Rosa, R., Grilo, T.F. (2018). Transgenerational deleterious effects of ocean acidification on the reproductive success of a keystone crustacean (*Gammarus locusta*). Marine Environmental Research. doi: 10.1016/j.marenvres.2018.04.006

-	oted Manuscript	Marrie Married
Transport	erational delétérious effects of ocean accification on the repróductive Fa knystone crustaioean (Germanus locusta)	1
Francisco	O Borges, Catia Figueiredo, Eduardo Sampaio, Riu Rosa, Tiago F. Grito	1000
PE	50141-1136(18)30108-9	
TACH.	10.1016) maranena 2018.04.008	

ACKNOWLEDGMENTS

http://orcid.org/0000-0003-3403-4287 https://www.scopus.com/authid/detail.uri?authorId=26534096600 https://www.researchgate.net/profile/Tiago_Grilo

IMPROVING KNOWLEDGE ON EEL'S RESILIENCE IN A CHANGING WORL

A special acknowledgment for the collaboration and advices provided by **Marta Pimentel** and **José Paula**

THANK YOU FOR YOUR ATTENTION!

This work was supported by the MARE strategic project (UID/MAR/04292/2013) and Fundação para a Ciência e Tecnologia (FCT) through a post-doctoral grant attributed to Tiago Grilo (SFRH/BPD/ 98590/2013), PhD grants attributed to Cátia Figueiredo and Eduardo Sampaio (SFRH/BD/130023/2017 and SFRH/BD/131771/2017, respectively), Programa Investigador FCT 2013 – Development grant to Rui Rosa and and the FCT Project CLIMATOXEEL (PTDC/AAG-GLO/3795/2014) awarded to Tiago Grilo