TRANSGENERATIONAL DELETERIOUS EFFECTS OF OCEAN ACIDIFICATION ON THE REPRODUCTIVE SUCCESS OF A GAMMARID AMPHIPOD SPECIES

Francisco Borges, Eduardo Sampaio, Cátia Figueiredo, Rui Rosa, Tiago F. Grilo

Washington, DC, USA
5th June 2018
GLOBAL CLIMATE CHANGE IS UNEQUIVOCAL...

- Increase in global average atmospheric and ocean temperatures
- Rising global average sea level
- Melting of glaciers and polar land ice
- Extreme droughts
- Storminess
- Floods
Continued anthropogenic CO$_2$ emissions to the atmosphere

Increased oceanic CO$_2$ uptake (400 µatm pCO$_2$ -> 900 µatm pCO$_2$ by 2100)

Disruption of the ocean’s carbon chemistry
Oceanic uptake of atmospheric CO₂ has led to progressive acidification (IPCC, 2014)

- ↓0.1 pH units – since the Industrial Revolution;
- ↑26% in acidity [H⁺] over the past 150 years;
- ↓0.4 units in the year 2100.

Acidification could have major impacts on biogenic habitat (e.g., coral reefs, seagrass and oyster beds), food webs (e.g., calcifying organisms), and geochemical cycles.
RESPONSES TO ENVIRONMENTAL STRESS

- **ACCLIMATION**
 - Short-term physical and/or behavioural adaptations

 Phenotypic plasticity
 - Maintenance of individual fitness and ecological performance

- **LONG-TERM ADAPTATION**
 - Increase in abundance and reproductive success of resilient genotypes.

 Selecting on genetic variability
 - Maintaining favorable genotypes
 - Shifting the population structure towards a new optimal phenotype
• inherence of non-genetic traits from adults to offspring (i.e. carry-over effects), as a result of exposure to a particular stress factor

• can positively influence offspring performance when exposed to the same conditions as the parental generation

EXAMPLES:

Parental conditioning to global change drivers leads to largely positive effects in the offspring’s response to similar conditions (Donelson et al. 2012, Thor & Dupont 2015, Rodríguez-Romero et al. 2016, Gibbin et al. 2017)

carry-over effects can render offspring more sensitive to stressors (Byrne 2011, Schade et al. 2014), and thus parental exposure does not always ensure the resilience of subsequent generations (Griffith & Gobler 2017)

There is a gap of knowledge concerning trans/multigenerational effects of OA in crustacean species, the majority of which focused in copepods
To investigate the transgenerational effects of OA (pCO$_2$ ~ 900 µatm) on the survival and reproductive traits of *G. locusta* over two generations (F0 and F1).

Understanding how survival and reproductive traits may be affected by environmental change, and whether these effects are transmitted throughout subsequent generations, will allow:

- to infer possible changes in mating and recruitment stemming from CO$_2$-driven physiological changes;
- predict the sustainability of natural *G. locusta* populations in a future acidified ocean.
STUDY SPECIES: *Gammarus locust*.

Gammarus locusta
Linnaeus, 1758

- Sub-Order Gammaridae
- Marine euryhaline species
- Coastal and estuarine areas

- Wide geographical distribution from the North Sea up to the Southern Portuguese and Spanish coasts

STUDY SPECIES’ LIFE CYCLE

~ 40-50 days at 15°C
(Neuparth et al., 2002)
Parental generation (F0)
- 5 replicates (4-L tanks)
- 25 individuals per tank

F1 generation
- 5 replicates (4-L tanks)
- 25 individuals per tank

Control
- Ambient pCO_2 (C)
 - 400 μatm

Acidification
- High pCO_2 (A)
 - 900 μatm

Stock
- 400 μatm
Physico-Chemical Parameters Monitoring

<table>
<thead>
<tr>
<th>Generation</th>
<th>Treatment</th>
<th>Temperature (°C)</th>
<th>Salinity</th>
<th>pH</th>
<th>TA (µmol/kgSW)</th>
<th>pCO₂ (µatm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>C</td>
<td>18.3 ± 1.3</td>
<td>35</td>
<td>8.1 ± 0.1</td>
<td>1932.2 ± 109.8</td>
<td>375.9 ± 67.7</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>18.4 ± 1.4</td>
<td>35</td>
<td>7.7 ± 0.1</td>
<td>1971.5 ± 64.3</td>
<td>827.5 ± 73.2</td>
</tr>
<tr>
<td>F1</td>
<td>CC</td>
<td>18.8 ± 0.8</td>
<td>35</td>
<td>8.0 ± 0.1</td>
<td>2126.5 ± 112.3</td>
<td>354.2 ± 28.7</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>18.8 ± 0.6</td>
<td>35</td>
<td>7.7 ± 0.1</td>
<td>2044.1 ± 140.4</td>
<td>825.5 ± 71.5</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>18.7 ± 0.6</td>
<td>35</td>
<td>8.0 ± 0.1</td>
<td>2105.7 ± 108.9</td>
<td>366.8 ± 20.5</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td>18.8 ± 0.6</td>
<td>35</td>
<td>7.7 ± 0.1</td>
<td>1943.6 ± 88.4</td>
<td>803.2 ± 27.8</td>
</tr>
</tbody>
</table>
• **SURVIVAL AT ADULTHOOD (30 DAYS, %)**

Survival in F0 declined significantly in acidified conditions, which did not occur in F1.

Survival in cross treatments decreased significantly compared to the control.
• **MATE-GUARDING DURATION**

Exposure to high pCO₂ produced a significant reduction in mate guarding duration in F0. In the offspring generation no significant differences were found compared to the control.
RESULTS

- **REPRODUCTIVE INVESTMENT**
 - a) Mean number of eggs

Parental females under acidification produced significantly more eggs than controls.

In the second generation, production of eggs was reduced.
• REPRODUCTIVE INVESTMENT
 b) Duration of embryonic development

F0
• Embryonic development lasted 10-11 days
• No differences were found between treatments and within generations

F1
• **REPRODUCTIVE INVESTMENT**

 c) Fecundity / Number of juveniles

- Number of juveniles did not significantly differ in the first generation between treatments
- Significant decline in F1 fecundity under acidification compared to the control and progenitors
- Negative parental effects in AC (offspring raised in control and whose parents were reared under OA)
• **SURVIVAL**

 o First exposure (initial acclimation – F0) to acidified conditions systematically reduced survival in this amphipod species

 o **Previous studies:**
 Hauton et al., 2009; Cardoso et al., 2017 – *Gammarus locusta*: 25 and 21 days exposed to 7.8 pH and 7.6 pH, respectively: survival declined to 65%

 o Negative impacts in calcification and metabolism (Kroeker et al., 2010) could result in energy being re-allocated from fitness-enhancing processes to acid-base regulation machinery, as a compensatory response towards hypercapnia (Pörtner et al. 2004)

• **MATE-GUARDING**

 o High metabolic costs: males of *Gammarus* sp. have poor energetic conditions due to OA and may be less able to endure the costs associated with precopulatory MG (Plaistow et al. 2003)

• **FEMALE REPRODUCTIVE INVESTMENT**

 o Metabolic costs led to a temporary shift in the allocation of energy that would normally be used for reproduction - i.e. in the female investment on the number of mature oocytes that are deposited as eggs in the brood pouch and, possibly, egg quality (Neuparth et al. 2002)

<table>
<thead>
<tr>
<th>Survival</th>
<th>F0</th>
<th>F1</th>
<th>Parental Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mate-guarding duration</td>
<td>![Red Down Arrow]</td>
<td>![Red Down Arrow]</td>
<td>Negative</td>
</tr>
<tr>
<td>Female investment</td>
<td>![Blue Up Arrow]</td>
<td>![Red Down Arrow]</td>
<td>Negative</td>
</tr>
<tr>
<td>Fecundity</td>
<td>![Green Equal]</td>
<td>![Red Down Arrow]</td>
<td>Negative</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

This work was supported by the MARE strategic project (UID/MAR/04292/2013) and Fundação para a Ciência e Tecnologia (FCT) through a post-doctoral grant attributed to Tiago Grilo (SFRH/BPD/98590/2013), PhD grants attributed to Cátia Figueiredo and Eduardo Sampaio (SFRH/BD/130023/2017 and SFRH/BD/131771/2017, respectively), Programa Investigador FCT 2013 – Development grant to Rui Rosa and the FCT Project CLIMATOXEEL (PTDC/AAG-GLO/3795/2014) awarded to Tiago Grilo.

THANK YOU FOR YOUR ATTENTION!

A special acknowledgment for the collaboration and advices provided by Marta Pimentel and José Paula

http://orcid.org/0000-0003-3403-4287
https://www.scopus.com/authid/detail.uri?authorId=26534096600
https://www.researchgate.net/profile/Tiago_Grilo