A WATER MASS HISTORY OF THE SOUTHERN CALIFORNIA CURRENT SYSTEM

Steven Bograd¹, Isaac Schroeder², Michael Jacox¹ ¹NOAA Southwest Fisheries Science Center, Monterey, CA ²Institute of Marine Sciences, University of California-Santa Cruz

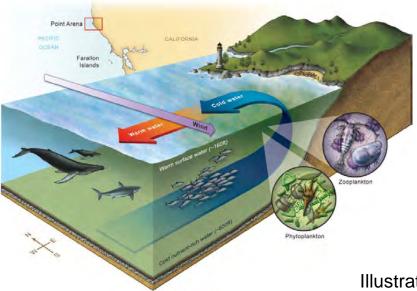
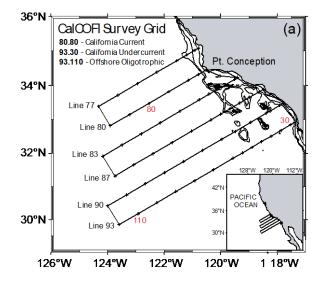
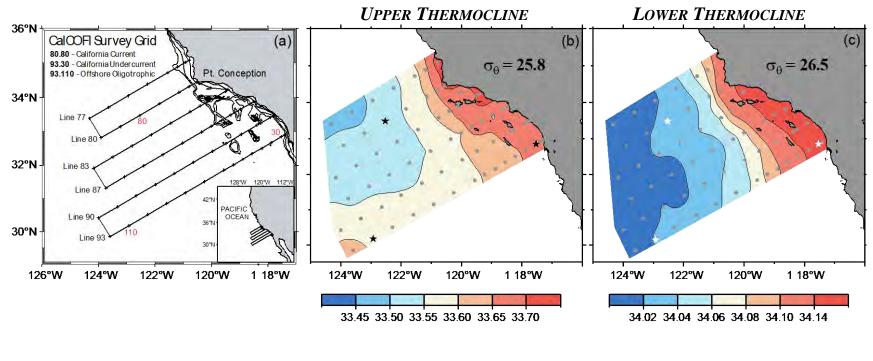
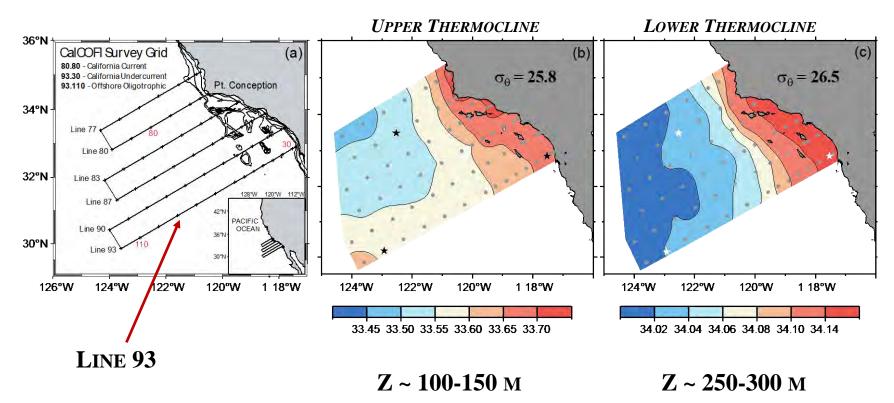
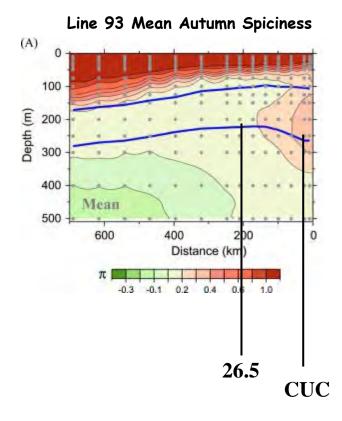




Illustration by Fiona Morris

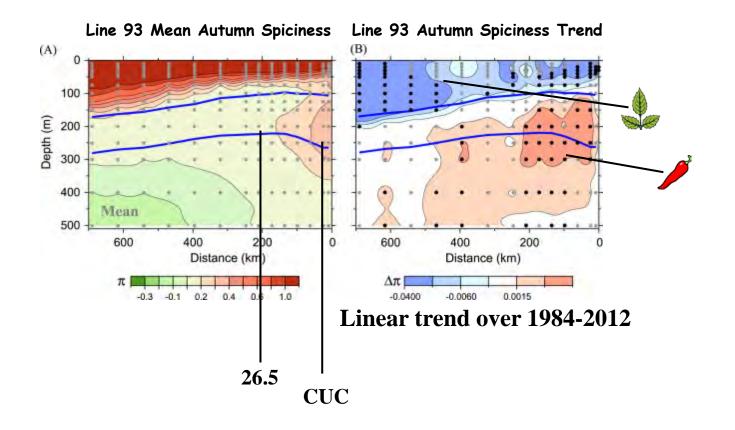
WATER MASS INFLUENCES ON THE CALIFORNIA CURRENT

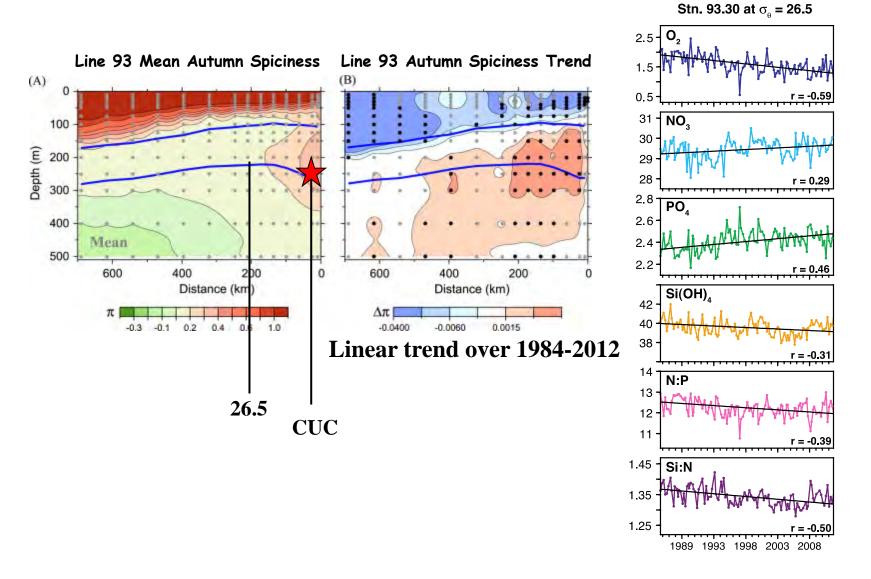




Z ~ 100-150 м

Z ~ 250-300 м



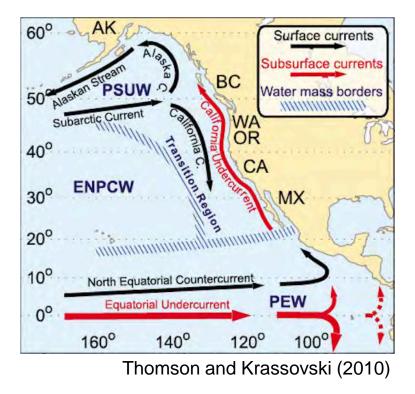

Bograd et al. (2015)

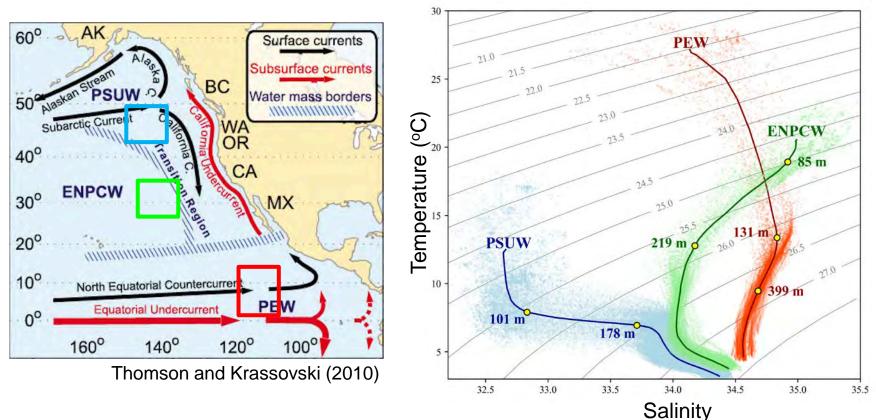
EFFECTS OF CLIMATE CHANGE ON THE WORLD'S OCEANS CONFERENCE

Bograd et al. (2015)

EFFECTS OF CLIMATE CHANGE ON THE WORLD'S OCEANS CONFERENCE

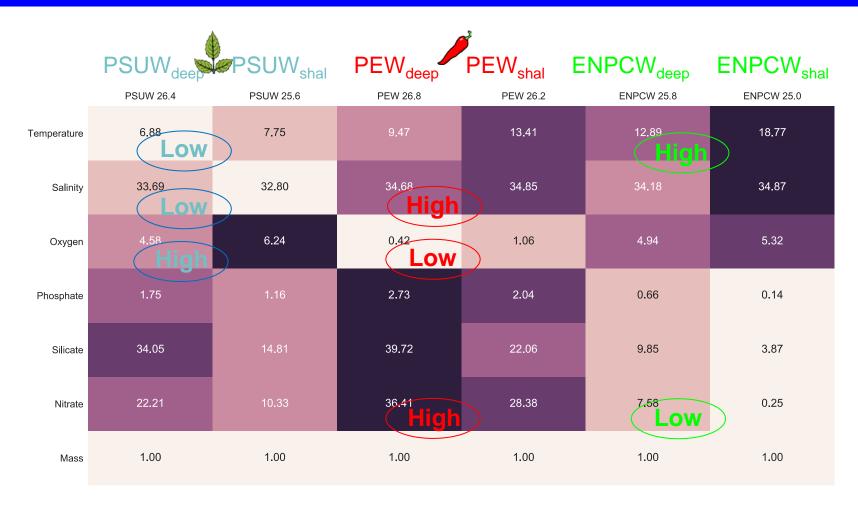
Bograd et al. (2015)


 $\sigma_{\theta} = 26.5$ AO, (mL/L/y) ANO_a (µmol/L/y Nitrate 1 Oxygen -0.001 -0.003 0.06 010 APO, (umol/L/y ASIO, (unal/L) Silicate **Phosphate** 0.07 0.04 0.01 0.04 0.002 0.006 0.010 36°N AN:P AS:N 34°N ₽ N:P S:N 32°1 30°N -0.005 -0.003 -0.001 0.042-0.030-0.016-0.006 122"W 120"W 118"W 116"W 124°W Linear trend over 1984-2012


Bograd et al. (2015)

- QUANTIFY WATER MASS CONTRIBUTIONS TO SOUTHERN CALIFORNIA CURRENT
- INVESTIGATE SPATIAL AND TEMPORAL VARIABILITY
 - LOW-FREQUENCY VARIABILITY (TRENDS OR CHANGE POINTS)
 - EFFECTS OF EL NIÑO LA NIÑA
- INFER MECHANISMS OF BIOGEOCHEMICAL CHANGES IN CALCOFI DATA
 - CHANGES AT SOURCE? ALONG ADVECTIVE PATHWAY? LOCALLY?
- **o** CLIMATE CHANGE IMPACTS

World Ocean Database, 1984-2016


Pacific Subarctic Water (PSUW) Pacfic Equatorial Water (PEW) Eastern North Pacific Central Water (ENPCW)

WATER MASS INFLUENCES ON THE CALIFORNIA CURRENT

	PSUW 26.4	PSUW 25.6	PEW _{deep} PEW 26.8	PEW _{shal} PEW 26.2	ENPCW _{deep}	ENPCW _{shal}
Temperature	6.88	7.75	9.47	13.41	12.89	18.77
Salinity	33.69	32.80	34.68	34.85	34.18	34.87
Oxygen	4.58	6.24	0.42	1.06	4.94	5.32
Phosphate	1.75	1.16	2.73	2.04	0.66	0.14
Silicate	34.05	14.81	39.72	22.06	9.85	3.87
Nitrate	22.21	10.33	36.41	28.38	7.58	0.25
Mass	1.00	1.00	1.00	1.00	1.00	1.00

Pacific Subarctic Water (PSUW) Pacfic Equatorial Water (PEW) Eastern North Pacific Central Water (ENPCW)

WATER MASS INFLUENCES ON THE CALIFORNIA CURRENT

Pacific Subarctic Water (PSUW) Pacfic Equatorial Water (PEW) Eastern North Pacific Central Water (ENPCW)

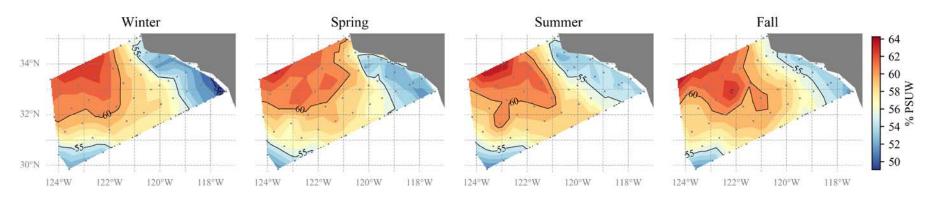
EXTENDED OPTIMUM MULTIPARAMETER ANALYSIS (OMP)

SIX WATER MASSES: (**PEW, PSUW, ENPCW; UPPER AND DEEP**) SIX VARIABLES: **T, S, O₂, NO₃, PO₄, SIO₄** SIX EQUATIONS + CONSERVATION OF MASS

SOLVE FOR % EACH WATER MASS IN CALCOFI DOMAIN [1984-2017]

Tomczak and Large (1989)

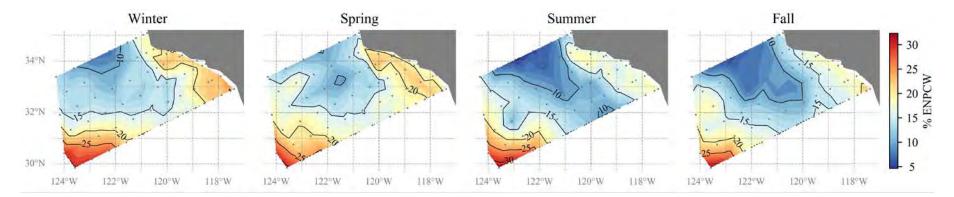
EXTENDED OPTIMUM MULTIPARAMETER ANALYSIS (OMP)

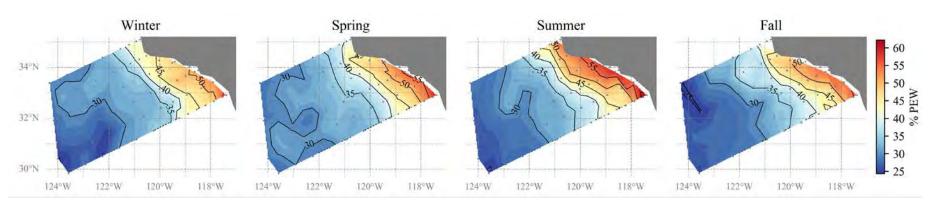

SIX WATER MASSES: (**PEW, PSUW, ENPCW; UPPER AND DEEP**) SIX VARIABLES: **T, S, O₂, NO₃, PO₄, SIO₄** SIX EQUATIONS + CONSERVATION OF MASS SOLVE FOR % EACH WATER MASS IN **CALCOFI** DOMAIN [1984-2017]

$$\begin{split} X_{\text{PEWu}} T_{\text{PEWu}} + \ldots + X_{\text{NPCWd}} T_{\text{NPCWd}} &+ 0 = T_{\text{OBS}} + R_{\text{T}} \\ X_{\text{PEWu}} S_{\text{PEWu}} + \ldots + X_{\text{NPCWd}} S_{\text{NPCWd}} + 0 = S_{\text{OBS}} + R_{\text{S}} \\ X_{\text{PEWu}} O_{2,\text{PEWu}} + \ldots + X_{\text{NPCWd}} O_{2,\text{NPCWd}} - r_{\text{O/P}} \Delta P = O_{2,\text{OBS}} + R_{\text{O2}} \\ X_{\text{PEWu}} PO_{4,\text{PEWu}} + \ldots + X_{\text{NPCWd}} PO_{4,\text{NPCWd}} + \Delta P = PO_{4,\text{OBS}} + R_{\text{PO4}} \\ X_{\text{PEWu}} NO_{3,\text{PEWu}} + \ldots + X_{\text{NPCWd}} NO_{3,\text{NPCWd}} + r_{\text{N/P}} \Delta P = NO_{3,\text{OBS}} + R_{\text{NO3}} \\ X_{\text{PEWu}} SiO_{4,\text{PEWu}} + \ldots + X_{\text{NPCWd}} SiO_{4,\text{NPCWd}} + r_{\text{Si/P}} \Delta P = SiO_{4,\text{OBS}} + R_{\text{SiO4}} \\ X_{\text{PEWu}} + X_{\text{PSUWu}} + X_{\text{NPCWu}} + X_{\text{PEWd}} + X_{\text{PSUWd}} + X_{\text{NPCWd}} = 1 + R_{\Sigma} \end{split}$$

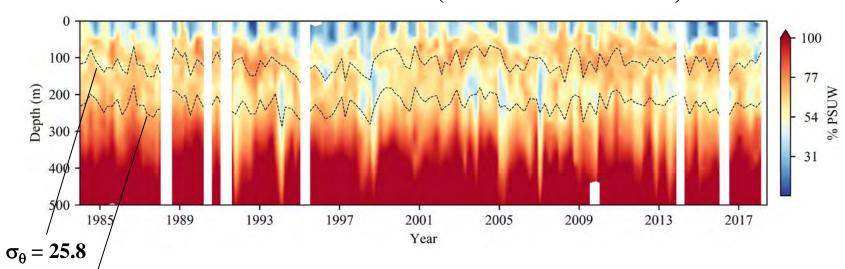
http://omp.geomar.de/node3.html

Tomczak and Large (1989)


EFFECTS OF CLIMATE CHANGE ON THE WORLD'S OCEANS CONFERENCE


% PSUW IN CALCOFI DOMAIN AT $\sigma_{\theta} = 25.8$

- SEASONAL MEAN **PSUW** CONTRIBUTIONS IN UPPER THERMOCLINE
- WATERS AT THIS LEVEL ARE <u>55-60% PSUW</u> THROUGHOUT
- <u>HIGH PSUW OFFSHORE</u> INFLUX OF CALIFORNIA CURRENT; LOW INSHORE
- WEAK SEASONALITY; MINIMUM INSHORE **PSUW** CONTRIBUTION IN WINTER

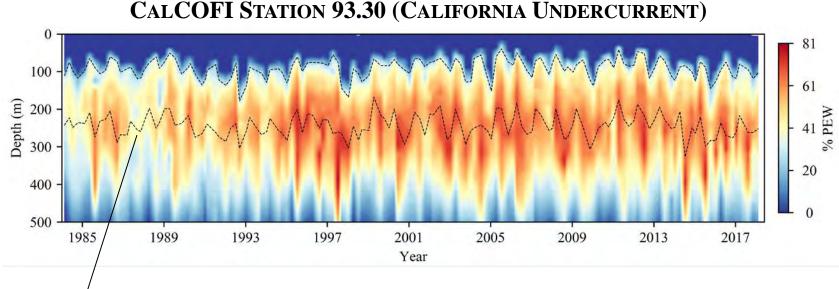


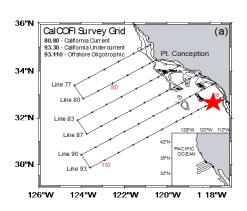
- SEASONAL MEAN ENPCW CONTRIBUTIONS IN UPPER THERMOCLINE
- WATERS AT THIS LEVEL ARE <u>ONLY 5-15% EPNCW</u>
- HIGHEST EPNCW IN SOUTHWEST CORNER AND <u>INSHORE</u> (ENTRAINED IN POLEWARD FLOW)



%**PEW** IN CALCOFI DOMAIN AT $\sigma_{\theta} = 26.5$

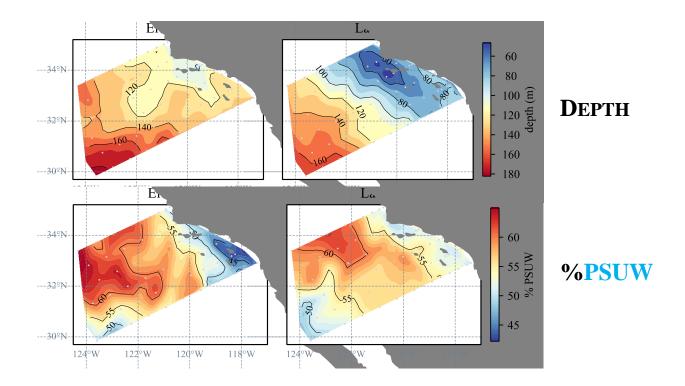
- SEASONAL MEAN PEW CONTRIBUTIONS IN LOWER THERMOCLINE
- STRONG CROSS-SHORE GRADIENT IN DISTRIBUTION OF PEW
- <u>50-60% PEW CONTRIBUTION</u> IN NEARSHORE REGION
- <u>STRONG SEASONALITY</u> MORE <u>PEW</u> IN SUMMER-FALL (STRONG CUC)



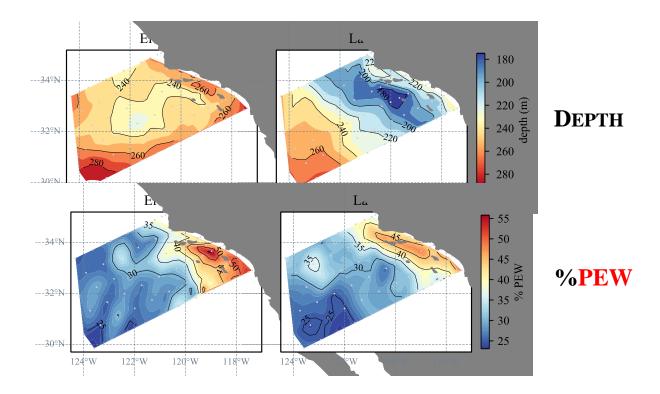


 $\sigma_{\theta} = 26.5$

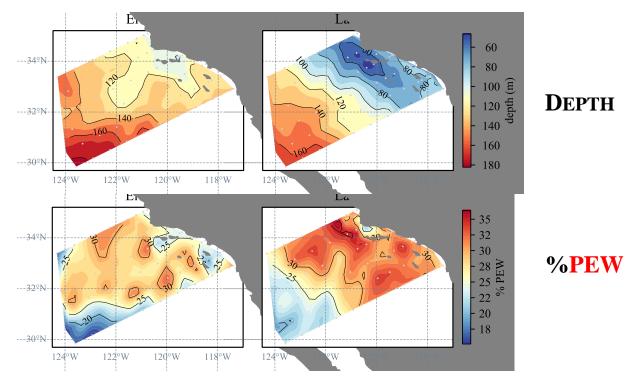
- TIME-DEPTH PLOT OF **PSUW** AT STATION 80.80
- O SEASONAL VARIABILITY IN SURFACE LAYER
- HIGH PSUW CONTRIBUTION AROUND $\sigma_{\theta} = 25.8$ (<u>CC</u>)
- <u>Strong interannual variability</u> in upper 200 m in Quantity of <u>PSUW</u> & depth structure



 $\sigma_{\theta} = 26.5$


- TIME-DEPTH PLOT OF **PEW** AT STATION 93.30
- HIGHEST **PEW** CONTRIBUTION AROUND $\sigma_{\theta} = 26.5$ (<u>CUC</u>)
- STRONG INTERANNUAL VARIABILITY: <u>TREND/SHIFT TO</u> <u>HIGHER PEW</u>
- HIGHER PEW CONTRIBUTION IN EL NIÑO YEARS (STRONGER CUC)

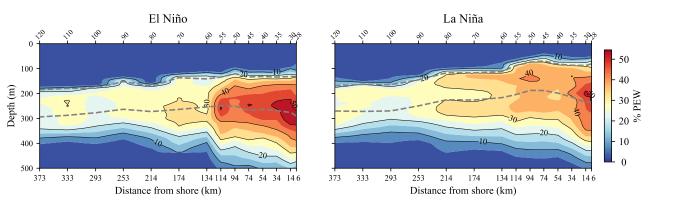
WINTER Z AND % PSUW IN CALCOFI DOMAIN AT $\sigma_{\theta} = 25.8$


- MEAN <u>UPPER</u> THERMOCLINE DEPTH, **PSUW** CONTRIBUTION DURING EL NIÑO, LA NIÑA
- <u>HIGHER PSUW</u> CONTRIBUTION OFFSHORE, LOWER INSHORE <u>DURING EL NIÑO</u>
- HIGH **PSUW** CONTENT WITHIN CALIFORNIA CURRENT CORE DURING LA NIÑA

WINTER Z AND %**PEW** IN CALCOFI DOMAIN AT $\sigma_{\theta} = 26.5$

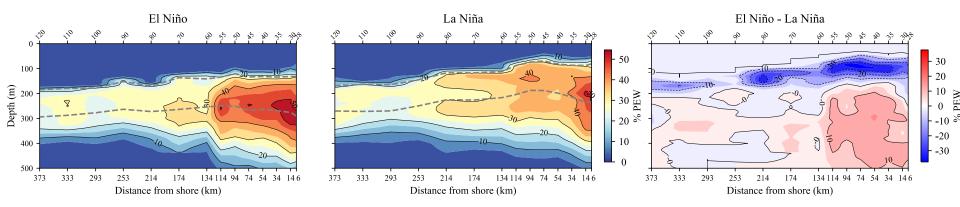
- MEAN LOWER THERMOCLINE DEPTH, PEW CONTRIBUTION DURING EL NIÑO, LA NIÑA
- <u>HIGHER PEW</u> CONTRIBUTION INSHORE <u>DURING EL NIÑO</u> (STRONGER CUC), LESS
 DURING LA NIÑA

WINTER Z AND %**PEW** IN CALCOFI DOMAIN AT $\sigma_{\theta} = 25.8$



• MEAN <u>UPPER</u> THERMOCLINE DEPTH, **PEW** CONTRIBUTION DURING EL NIÑO, LA NIÑA

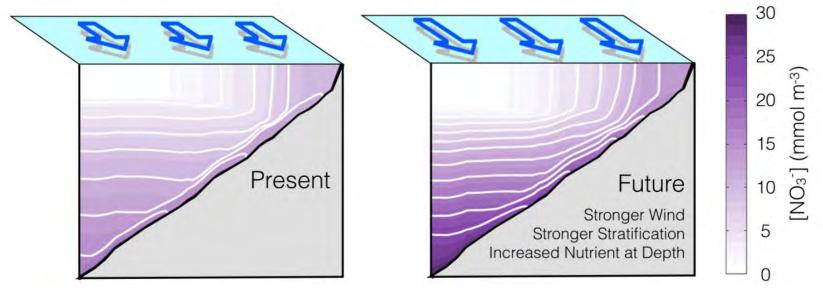
- HIGHER **PEW** CONTRIBUTION DURING LA NIÑA, BUT ISOPYCNAL MUCH SHALLOWER
- ALTHOUGH WEAKER **PEW** CONTRIBUTION DURING LA NIÑA, HAVE <u>MORE **PEW**</u> IN


UPPER WATER COLUMN

%PEW IN CALCOFI DOMAIN ALONG LINE 93

- LINE 93 SECTIONS, PEW CONTRIBUTION DURING EL NIÑO, LA NIÑA
- SIGNIFICANTLY HIGHER PEW CONTRIBUTION DURING EL NIÑO
- VERTICAL DISTRIBUTION OF **PEW** DIFFERENT IN EL NIÑO VS. LA NIÑA

%PEW IN CALCOFI DOMAIN ALONG LINE 93



- DIFFERENCE IN **PEW** CONTRIBUTION DURING EL NIÑO VS. LA NIÑA
- HIGHER **PEW** CONTENT DURING LA NIÑA IN UPPER THERMOCLINE
- STRONGER UPWELLING DURING LA NIÑA SUPPLIES UPPER LAYERS WITH ENHANCED PEW CONTRIBUTION – STRONGER BIOLOGICAL IMPACT?

• OPTIMUM MULTIPARAMETER ANALYSIS (OMP) IS A USEFUL TOOL FOR CHARACTERIZING WATER MASSES

- OPTIMUM MULTIPARAMETER ANALYSIS (OMP) IS A USEFUL TOOL FOR CHARACTERIZING WATER MASSES
- LOW FREQUENCY VARIABILITY IN WATER MASS CONTRIBUTIONS IN SOUTHERN CALIFORNIA CURRENT
 - TREND TOWARDS A STRONGER UNDERCURRENT/PEW INFLUENCE
 - STRONGER UNDERCURRENT/PEW INFLUENCE DURING EL NIÑO EVENTS
 - STRONGER UPWELLING DURING LA NIÑA TAPS NUTRIENT-RICH PEW MORE EFFECTIVELY
 - WATER MASS TRANSFORMATION ALONG ADVECTIVE PATHWAY (NOT SHOWN)

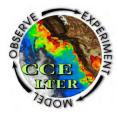
- OPTIMUM MULTIPARAMETER ANALYSIS (OMP) IS A USEFUL TOOL FOR CHARACTERIZING WATER MASSES
- LOW FREQUENCY VARIABILITY IN WATER MASS CONTRIBUTIONS IN SOUTHERN
 CALIFORNIA CURRENT
 - TREND TOWARDS A STRONGER UNDERCURRENT/PEW INFLUENCE
 - STRONGER UNDERCURRENT/PEW INFLUENCE DURING EL NIÑO EVENTS
 - STRONGER UPWELLING DURING LA NIÑA TAPS NUTRIENT-RICH PEW MORE EFFECTIVELY
 - WATER MASS TRANSFORMATION ALONG ADVECTIVE PATHWAY (NOT SHOWN)
- FUTURE WORK:
 - UPWELLING SOURCE DEPTH VS. UNDERCURRENT LOCATION & STRENGTH
 - BIOLOGICAL IMPLICATIONS OF DIFFERENT WATER MASS DISTRIBUTIONS

Jacox et al. (2015)

• Changes in nutrient content of source waters ...?

• Changes in stratification ...?

• Increased hypoxia and ocean acidification ...?


• Plasticity of species dependent on coastal upwelling ...?

QUESTIONS?

