Climate-induced shifts in phenology: Case studies of fish, whales, and seabirds in the Gulf of Maine

Michelle <u>Staudinger^{1,2}</u>, Dan Pendleton³, Adrian Jordaan²

¹DOI Northeast Climate Science Center, Amherst, MA, USA ²University of Massachusetts Amherst, Amherst, MA, USA

³Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston, MA, USA

C Anderson Cabot Center for Ocean Life at the New England Aquarium

Seasonal Warming Trends in the Gulf of Maine

- Warming during all seasons
- Strongest rates in summer (~1.0°C/dec)
- Increased variability in seasonal stratification onset
- Changes in seasonal water mass inputs from NE Channel

Trends in Seasonal Transitions

Shifting seasons in the GOM

- Earlier onset of spring (~1 d/yr)
- Earlier summer (~1 d/yr)
- Later fall transition → increased summer duration (>2 d/yr) → decreased winter duration

Primary drivers in seasonal phenology trends:

- NAO
- Gulf Stream position
- Atmospheric pressure
- Air temperatures

Friedland et al. 2015; Thomas et al. 2017

Why Study Phenology in the Gulf of Maine?

- Mismatches/asynchronies
- Altered fitness & productivity
- Population dynamics
- Ecosystem function

- Hotspot of warming
- Highly seasonal system
- Seasonal foraging and

breeding/spawning area

Project Objectives

- Improve understanding of climate-induced shifts in phenology in the Gulf of Maine
 - **1) Spring spawning** migration of anadromous alewife (*Alosa pseudoharengus*)
 - **2)** Spring-summer foraging conditions of nesting seabirds (*Sterna* sp.)
 - **3) Spring migration** to **foraging** habitats for North Atlantic right (*Eubalaena glacialis*) and fin (*Balaenoptera physalus*) whales

Are earlier springs or other seasonal variables causing shifts in species' phenology?

Case Study 1: Alewife (*Alosa pseudoharengus*)

Objectives

- 1) Test for changes in migration timing
- 2) Identify key drivers of movement patterns

Factors influencing Climate Vulnerability

Climate Vulnerability

Ranking: Highly Vulnerable Confidence: High Region: NE Atlantic shelf Climate scenario: RCP 8.5 Time period: 2005-2055

- Increasing SST and air T
- Ocean acidification
- Complex spawning cycle
- Early life history, dispersal requirements

– Sensitivity

Exposure

Attributes from Hare et al. 2016

MA Alewife Spawning Runs

- Daily fish counts, river temps
- 12 locations
- March June
- 1990 2017

Approach

Analyses:

• Linear mixed models (ImerMod) \rightarrow JD Run initiation

NORTH Parker River **Ipswich River** Little River **Jones River** Town Brook **Nemasket River Acushnet River Agawam River Monument River** Stony Brook Herring-Harwich **Marston Mills**

SOUTH

Results

Run initiation ~ std + ftd** + nao + annualcount + (1|loc) + (1|year)

- High variability in phenological responses among runs
- Lag in seasonal response to fall transition.....or winter duration (~severity?)
- Daily count model to explain within season drivers of movement

Case study 2: Colonial nesting seabirds (Sterna sp.)

Objectives

1) Describe long-term trends in diet

2) Identify drivers of major prey in tern diets

3) Relate fluctuations in diet to productivity

Maine Coastal Islands National Wildlife Refuge

Factors influencing Climate Vulnerability

Climate Vulnerability

Ranking: Highly – Moderately Vulnerable Region: Northeastern United States Climate scenario: SRES A1B Time period: 2050, 2080

Approach

Analysis:

- **Species level**: Binomial Generalized Additive Models (1988-2017)
- Regional level: Binomial Generalized Linear Models (1998-2017)

Long-term Cycles in Common Tern Diet

Long-term Cycles in Roseate Tern Diet

Does Spring Transition Date Predict Prey Probabilities?

Significant predictors:

- Hake: Spring Chl, STD
- Herring: Spring Chl, SST
- Sandlance: Fall FTD, SST
- Butterfish: Fall FTD, SST; spring Chl

Seabird Summary and Next Steps

- Terns diets are largely focused on YOY and juvenile fishes
- Integrate all seasonal (winter) environmental variables into models
- Evaluate relationship between prey cycles relative to tern productivity

	-	Butterfish	
	San	dlance	
		At. herring	
White hake			
Winter	Spring	Summer	Fall

Larval period

Case study 3: North Atlantic right (*Eubalaena glacialis*) and fin (*Balaenoptera physalus*) whales

Objectives

- 1) Test for changes in migration phenology
- 2) Estimate timing of peak habitat use relative to environmental drivers

Factors influencing Climate Vulnerability

Bay of Fundy & Roseway Basin Aug – Sept

Great South Channel

May – July

Cape Cod Bay December – May

November – February

Protected Species Climate Vulnerability Assessment: *In progress*

- Unknown impact of warming on whales
- Recent abandonment of traditional habitats in GOM; exception of CCB
- Females are especially vulnerable to entanglement in fishing gear

Approach

Response variables

• Right and fin whale occurrence

Environmental parameters

- SST
- Chl
- Bathymetry

Analysis:

Multi-season occupancy models ~state-space hierarchal model

Spatio-temporal resolution

- 1998 2016
- Jan May
- 4.6 km square sites

Estimated day of Maximum Occupancy

Year

CCB Maximum Occupancy vs. Spring TD

- Right and fin whales occupancy appears to have undergone substantial opposite temporal shifts
- Tight coupling between species response and physical changes proportional to
 - Regional warming
 - Advancement of spring
- Evaluate shifts in occupancy of CCB relative to human activities

Overall Summary and Conclusions

- Understanding shifts in phenology is complex
- Responses are inconsistent across species
- Within season environmental events (e.g., Spring TD) don't fully explain timing of biological events → seasonal lags likely important for many species

Understanding where AND when they are responding to environmental drivers have implications for population dynamics, interactions with human activities (water withdraws, fishing, shipping), and management decisions

Acknowledgements

Team river herring

Rebecca Dalton MA Dept Marine Fisheries John Finn John Sheppard Amanda Davis Matthew Devine Marcelo Somos-Valenzuela Sam Stettiner

Team seabird Keenan Yakola USFWS and Audubon's Project Puffin Chris Sutherland Paula Shannon Linda Welch Stephen Kress Rachel Bratton

Team whale Provincetown Center for Coastal Studies

NA Right Whale Consortium Bob Kenny Kevin Friedland

Morgan Tingley

NARWC THE NORTH ATLANTIC RIGHT WHALE CONSORTIUM

