Zooplankton community changes on the Canadian northwest Atlantic continental shelves during recent warm years

Catherine L. Johnson1, Stéphane Plourde2, Pierre Pepin3, Emmanuel Devred1, David Brickman1, David Hebert1, Peter S. Galbraith2, Eugene Colbourne3

1 Fisheries and Oceans Canada, Bedford Institute of Oceanography
2 Fisheries and Oceans Canada, Institut Maurice-Lamontagne
3 Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre

Acknowledgements
Benoit Casault, K. Alexandra Curtis, Atlantic Zone Monitoring Program teams and data management groups in the DFO Maritimes, Quebec, and Newfoundland regions, and captains and crew of survey vessels
Zooplankton community structure and change

Marine zooplankton community structure is an **emergent property** of interactions among

- Upstream supply: circulation and species composition and abundance
- Transport pathways
- Vertical migration behavior
- Time and space varying production, growth, and development
- Time and space varying mortality
Presentation Objectives

Characterize dominant patterns in the Canadian NW Atlantic shelf zooplankton community and response to recent environmental changes

Canadian NW Atlantic shelf zooplankton community
- 1999-2011 copepod community composition
- 1999-2011 zooplankton community spatial pattern
- Temperature trends
- Changes in dominant taxa and groups in the 2010s

Scotian Shelf region copepod community
- Changes in diversity
- Changes in rank abundance and biomass
Sections sampled 2X / year since 1999

- Vertical ring net
 - ¾ m diameter
 - 200 μm mesh
 - Towed from near-bottom or 1000 m to surface

- CTD and rosette
 - Temperature, salinity, oxygen, nutrients, chlorophyll…

High frequency stations sampled 1-2X / month
Northwest Atlantic shelf system

Copepods were divided into dominant, subdominant, uncommon, and rare taxa based on occurrence and relative abundance thresholds.

- Dominants (3) are ubiquitous.
- Distributions of 12 subdominants show habitat associations, e.g.,
 - shallow banks
 - deep shelf water
 and latitudinal gradients.
- Many of the 20 uncommon taxa are associated with marginal habitats:
 - slope water
 - nearshore
 - deep water
Rank biomass of dominant and subdominant copepods plus large, uncommon species *Paraeuchaeta norvegica*, 1999-2011

- *Calanus* species were biomass dominants
- *P. norvegica* was also in the top four copepods ranked by biomass
- Small-sized dominant copepods make up a small fraction of community biomass despite their high abundance
Spatial zooplankton community pattern, 1999-2011

• The dominant mode of community spatial variation in both spring and fall is associated with depth – shallow and shelf community vs. deep-water and offshore species

• Influence of fall slope water intrusion is evident on the western Scotian Shelf

• The second mode of community spatial variation reflects latitudinal (fall) or along-shelf (spring) environmental gradients

Canadian northwest Atlantic temperature anomaly trends

Sea Surface Temp.

<table>
<thead>
<tr>
<th>Location</th>
<th>1980</th>
<th>1981</th>
<th>...</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labrador</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newfoundland Shelves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gulf of St. Lawrence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scotian Shelf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Gulf of Maine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom Temp.

<table>
<thead>
<tr>
<th>Location</th>
<th>1980</th>
<th>1981</th>
<th>...</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labrador</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newfoundland Shelves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gulf of St. Lawrence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scotian Shelf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Gulf of Maine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anomaly (SD)

<table>
<thead>
<tr>
<th>Year</th>
<th>Anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>-3</td>
</tr>
<tr>
<td>1981</td>
<td>-2.5</td>
</tr>
<tr>
<td>1982</td>
<td>-2</td>
</tr>
</tbody>
</table>

Abundance anomalies in dominant NW Atlantic taxa and groups

<table>
<thead>
<tr>
<th>N</th>
<th>Labrador Newfoundland Shelves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gulf of St. Lawrence</td>
</tr>
<tr>
<td>S</td>
<td>Scotian Shelf Eastern Gulf of Maine</td>
</tr>
</tbody>
</table>

Copepods

- **Calanus finmarchicus**
- **Pseudocalanus spp.**
- **Non-copepods**

Central Scotian Shelf (Halifax-2) copepod richness and evenness

Species Richness

Evenness

Mean: 7.27

Mean: 0.652

Correlation with environmental metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>p</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (0-50 m)</td>
<td><0.001</td>
<td>0.647</td>
</tr>
<tr>
<td>Bottom temperature</td>
<td><0.001</td>
<td>0.541</td>
</tr>
<tr>
<td>Stratification</td>
<td>0.057</td>
<td>0.196</td>
</tr>
</tbody>
</table>

Correlation with environmental metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>p</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (0-50 m)</td>
<td>0.0014</td>
<td>0.457</td>
</tr>
<tr>
<td>Bottom temperature</td>
<td><0.001</td>
<td>0.515</td>
</tr>
<tr>
<td>Stratification</td>
<td>0.012</td>
<td>0.319</td>
</tr>
</tbody>
</table>

Richness and evenness metrics based on adult copepods
Changes in Scotian Shelf copepod rank **abundance** (top 95%) between 1999-2010 and 2011-2017

- Abundance of dominant species has declined
- Moderate changes in rank order in both seasons

New to top 95%
- Clausocalanus
- Metridia

Spring

Fall
Changes in Scotian Shelf copepod rank **biomass** (top 99%) between 1999-2010 and 2011-2017

- Biomass of dominant species has declined
- *Calanus* species retain top two ranks in both seasons

Spring

- New to top 99%
 - 10 *O. atlantica*

Fall

- New to top 99%
 - 6 *Centropages*
 - 15 *Oithona*
 - 16 *Mecynocera clausi*
Conclusions

• The Canadian NW Atlantic shelf copepod community exhibits relatively strong, recurring annual and spatial variability patterns.

• Abundances of dominant species and groups have shown persistent, large scale changes on the NW Atlantic shelves since about 2010-2012.

• On the Scotian Shelf in the 2010s, the copepod community shifted toward:
 - Lower abundance and biomass of dominant species, especially *Calanus*
 - Higher species richness and evenness
 - Moderate changes in rank abundance
 - Moderate changes in rank biomass
Implications of recent warm conditions

• Abundances of regional “immigrant” species are strongly related to shifts in water mass contributions.
 -e.g. Arctic *Calanus* vs. warm-water offshore copepods on Scotian Shelf
• *Calanus* species responses are more complex – although a decline was observed, interactions of diapause timing and vertical migration with shelf circulation and spring bloom timing may mitigate impact of warming in some areas.
• Shifts in the developmental stage ratios of some small copepod species suggest changes in timing of seasonal production cycle.
• Community changes suggest a potential shift in energy pathways for primary production in recent warm years, with production possibly consumed by smaller copepods and greater transport to deep water.
Thank you for your attention