

Under pressure: Fisheries and climate change in a highly vulnerable marine ecosystem

J. Porobic¹; E. Fulton²; S. Frusher³; C. Parada⁴; B. Ernst⁵; P. Manríquez

¹Quantitative Marine Science Program, Institute of Marine and Antartic Studies (IMAS). University of Tasmania & CSIRO
²Commonwealth Scientific and Industrial Research Organisation (CSIRO). AUSTRALIA
³Centre for Marine Socioecology. Institute for Marine and Antartic Studies. University of Tasmania. Australia
⁴Departamento de Geofísica (DGEO), Facultad de Ciencias Físicas y Matemáticas. Universidad de Concepción. Chile
⁵Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas. Universidad de Concepción. Chile

June 5, 2018

Background	Approach and methodology	Results & discussion 0000000	Conclusion	Thoughts for the future
The JFRE as a VME				

JUAN FERNÁNDEZ RIDGE ECOSYSTEM LOCATION - STRUCTURE

- 1% Chilean Territory
- Approximately 97,166 km²
- Juan Fernández Archipelago
 - 1000 inhabitants (aprox.)
 - Robinson Crusoe Santa Clara
 - Selkirk

JUAN FERNÁNDEZ RIDGE ECOSYSTEM JFRE AS A VME

- 80% of endemism
- 60% historical extinctions
- 59% threatened or rare species
- Biosphere Reserve (1977)
- Highest Conservation Priority Chile

Percentage of Marine Endemism

Background	Approach and methodology	Results & discussion 0000000	Conclusion	Thoughts for the future
Fisheries in JFRE				

ECONOMY - Fisheries

Background	Approach and methodology	Results & discussion 0000000	Conclusion	Thoughts for the future
History of the Man	agement			

THE INDUSTRIAL FLEET THE HISTORY OF A FAILURE

- Trawling fisheries
- Boom-and-Bust fishery ۲
- Both currently closed
 - 2006 Orange roughy 2012 Alfonsino

Background	Approach and methodology	Results & discussion 0000000	Conclusion	Thoughts for the future
History of the Manage	ment			

THE ARTISANAL FLEET A fragile socio-economic system

- Tightly-knit fishing community
- Main economic income
 - 70% Lobster fishery
- Management
 - 3S type Formal management
 - Size Sex Season
 - Internal code of conduct

Likely future increase in fishing effort

Background	Approach and methodology	Results & discussion 0000000	Conclusion	Thoughts for the future
History of the Mar	nagement			

CLIMATE CHANGE Expected changes in the JFRE

- Severe increase in aridity Karnauskas *et al.* 2016
- Increase in seawater temperature

Background	Approach and methodology	Results & discussion 0000000	Conclusion	Thoughts for the future
History of the Manag	zement			
0	0			

CLIMATE CHANGE IMPACTS ON RESOURCES

- Unknown impact on fisheries
- No fish no food and no money
- Important management Problem
 - Fisheries
 - Political
 - Conservation
- Uncertain socio-ecological future

Conclusion

Thoughts for the future

ASSESSING THE IMPACT OF CLIMATE CHANGE IN JFRE ATLANTIS - SHORT DESCRIPTION

- Spatial explicit whole of ecosystem model
 - Physical drivers
 - Currents
 - Temperature
 - Bio-ecological processes
 - Growth
 - Reproduction
 - Trophic relation
 - Management and harvesting
 - Fishing mortality
 - Effort control
 - Social drivers
 - Revenues
 - Social impact

Conclusion

Thoughts for the future

ASSESSING THE IMPACT OF CLIMATE CHANGE CONFIGURATION: JFRE ATLANTIS MODEL

Conclusion

Thoughts for the future

ASSESSING THE IMPACT OF CLIMATE CHANGE CONFIGURATION: JFRE ATLANTIS MODEL

Conclusion

Thoughts for the future

ASSESSING THE IMPACT OF CLIMATE CHANGE CONFIGURATION: JFRE ATLANTIS MODEL

Conclusio

INCLUDING CLIMATE CHANGE

Scenarios - Projections 2050

	Crusta	cean <mark>C</mark>	Finfish F	C. Change
Scenario	SPL	GCR		RCP 4.5&8.5
BAU	-	-	-	\checkmark
50%↑ C+F	\uparrow	\uparrow	\uparrow	\checkmark
300%MIX	↓ 20%	\uparrow	\uparrow	\checkmark

Background 0000000	Approach and methodology	Results & discussion •••••••	Conclusion	Thoughts for the future
Model performance				

MODEL SKILL ASSESSMENT STATS

Model Efficiency ~ 1 Correlation ~ 0.9

June 5, 2018 12 / 21

Results & discussion

Conclusio

Trophic structure

TROPHIC LEVELS JFRE SIMULATED AVERAGE FOOD-WEB

- Highly dependent on local primary production
- The major component of the food web:
 - phytoplankton
 - zooplankton
 - mesopelagic fishes

TROPHIC LEVELS HINDCAST MODEL

ARTISANAL

0.0 -

-0.2 Ratio of change -0.4

- High impact on Lobster
- Almost no impact on Finfish
- Increase on sea urchin

INDUSTRIAL

High impact on Alfonsino

Scenarios

Historical Industrial Artisanal

- Big impact on bycatch
- Impact highly localize

Results & discussion

Conclusion

Climate Change projections

TIME SERIES PROJECTIONS CHANGES THROUGH TIME - SINCE 2011

- High Difference compared to 2011
- RCP 4.5 biggest impact
- Highest impact on primary producers

Results & discussion

Conclusio

Thoughts for the future

Climate Change projections

COMPARE BY FUNCTIONAL GROUPS Average change (2005 - 2011) & (2040 - 2050)

- RCP 4.5 biggest change
- Mayor impact on large phytoplankton
- Escalated effect
- Low effect on crustaceans

CUMULATIVE EFFECT BASE-SCENARIO BAU

- RCP 8.5 & 4.5 similar
- 50% Increase All
 - ↓ Spiny lobster, golden crab and JF morwong biomass
- Mix (-20% lobster)
 - ↑ Spiny lobster biomass
 - ↓ Golden crab biomass

Background 0000000	Approach and methodology	Results & discussion ○○○○○●	Conclusion	Thoughts for the future
Climate Change and	l Fisheries			

COMPARE BAR-PLOTS PROJECTED CATCH IN THE LONG RUN

Results & discussion

Conclusion

Thoughts for the future

CONCLUSION PROJECTED CATCH IN THE LONG RUN

- Controlled by primary production
- Low impact from the artisanal fisheries
- Increase in the sea urchin population
- The ecosystem is not at optimal dynamical state

Results & discussion

Conclusion

Thoughts for the future

CONCLUSION PROJECTED CATCH IN THE LONG RUN

- Controlled by primary production
- Low impact from the artisanal fisheries
- Increase in the sea urchin population
- The ecosystem is not at optimal dynamical state

THOUGHTS FOR THE FUTURE Always about data

Biology

- Biomass
- Recruitment
- Energetic costs

Modelling

- Bio-energetic
- Integrating CC stressors
- Management
 - New meassures
 - Foster diversification

Background 0000000	Approach and methodology	Results & discussion 0000000	Conclusion	Thoughts for the future

In Chile today, nobody can seriously think about the future or development without addressing the environmental dimension. But not as a slogan, but with concrete actions, with participation, with public-private collaboration, hand in hand with society and science, looking at the world (*Michelle Bachelet (Former President of Chile) during the signing of the Decree on the Creation of Marine Protected Areas in the Juan Fernandez Ridge Ecosystem*.

Javier Porobic : Email : jporobicg@gmail.com twiter : @jporobicg