Three species of *Vibrio* pathogen in the Chesapeake Bay under future climate change scenarios

Barbara Muhling

John Jacobs, Charles Stock, Carlos Gaitan, Vincent Saba, Desiree Tommasi, Keith Dixon
Vibrio in Chesapeake Bay

- Several species present naturally
- Vibriosis cases in warmer months
 - *V. parahaemolyticus* most common, *V. vulnificus* most severe
- Warmer waters associated with higher occurrence of bacteria in the water
- Species-specific salinity ranges
Vibrio in Chesapeake Bay
Habitat models

V. vulnificus
Probability of occurrence (/1)
Jacobs et al. 2014

V. cholerae
Probability of occurrence (/1)
Louis et al. 2003

V. parahaemolyticus
log cells/g
USFDA 2005
Vibrio and climate change in the Chesapeake Bay

- Jacobs et al. (2015) projected *V. vulnificus* in water and *V. parahaemolyticus* in oysters out to 2100.
- Estimated water temperature from near-surface air temperatures.
- But: modeled Chesapeake Bay as 1-dimensional.
 - Salinity also held constant at 12 psu.
Climate model resolution and estuarine environments

• General circulation models (GCMs) too coarse to resolve local-scale dynamics in estuaries
• If we want to represent fine-scale features like estuaries, GCMs must be **downscaled** to area of interest
• *Statistical downscaling*: relies on present-day relationships between regional and local-scale processes
 • Low computational cost, can compare multiple GCMs
 • Needs long observational record (~30 years+)

[Image of map with temperature change and magnifying glass]
Our modeling framework

- See Muhling et al. 2017 Estuaries and Coasts

Potential Salinity and Temperature Futures for the Chesapeake Bay Using a Statistical Downscaling Spatial Disaggregation Framework

Authors: Barbara A. Muhling, Carlos F. Oktian, Charles A. Stock, Vincent S. Saba, Desiree Tommasi, Keith W. Dixon

![Susquehanna River Watershed and Thomas Point](image1)

- Daily air temperature (Susquehanna Watershed and Thomas Point)
- Daily precipitation (Susquehanna Watershed)
- Non-linear Surface Water Temperature Model
- Water Balance Model
- Monthly Susquehanna River Streamflow
- Monthly Chesapeake Bay Spatial Temperature
- Monthly Chesapeake Bay Spatial Salinity

General Circulation Model

Statistical downscaling

Downscale

Get variables of interest

Spatial disaggregation

Downscale

Model Tree

Model Tree

Monthly Chesapeake Bay Spatial Temperature

Monthly Chesapeake Bay Spatial Salinity

Susquehanna River Watershed

Thomas Point
How will conditions change in the future?

- Two primary sources of uncertainty for long-range projections
 1. Representative Concentration Pathway (RCP): how much CO$_2$ will we emit?
 - We chose to consider the “business as usual” scenario, RCP8.5
 2. Variability in projections from different GCMs
 - We selected four GCMs with diverging but plausible temperature and precipitation futures
Future projections: estuarine conditions

- Mean surface water temperatures increased >5°C in the warm/wet model, but only 2-3°C in the cool/wet model.
- Salinity was strongly variable, reflecting high uncertainty with precipitation, but increased in the two dry models.
Future projections: estuarine conditions

- **Spatial variability** in warming was less than **inter-model variability**
 - Greatest warming in upper tributaries, less near continental shelf
- Salinity changes greatest in winter – spring, responding to **changing snow melt**
 - Salinity decrease in wetter models, increase in dry models within mesohaline regions

Summer temperature change
1970 - 1999 vs. 2071 - 2100

Winter salinity change
1970 - 1999 vs. 2071 - 2100
Effects on *Vibrio: V. vulnificus*

- Increase in probability of occurrence from April through to November
- Summer to fall increases strongest in warmer models, weakest in cool/wet model

![Graph showing probability of occurrence of V. vulnificus over months with different models]
Effects on *Vibrio*: *V. parahaemolyticus*

- Increase in predicted concentration in oysters throughout the year
- Models give similar results winter – spring, warmer models associated with higher risk summer - fall
Effects on *Vibrio: V. cholerae*

- Both wet models projected an increase in probability of occurrence in winter – spring
- Warm/dry model projected a decrease compared to the recent historical period
V. vulnificus

- Strongest increases in probability of occurrence in mesohaline regions
- Overall increase in high-risk area
V. parahaemolyticus

- Increases in predicted concentration in oysters throughout most of the Bay
- Except regions where salinity remains < 5 psu
V. cholerae

- High-risk areas remain restricted to low salinity areas
- Warming increases probability of occurrence within these areas
- Dry models project contraction of high-risk areas upstream
Conclusions

• Likely increase in occurrence of *V. vulnificus* in the Chesapeake Bay and increase the mean concentration of *V. parahaemolyticus* in oysters by the end of the 21st century

• In contrast, occurrence for *V. cholerae* may increase only in wetter future, high-risk areas are restricted to low salinity zones of the bay

• The length of the high-risk summer season for *V. vulnificus* and *V. parahaemolyticus* is projected to increase

• Implications for future recreational use and seafood extraction from the Chesapeake Bay, with the potential for considerable economic costs as a result

• Downscaled projections are available for other studies and uses

Future work

• High resolution seasonal forecasts of *Vibrio* risk (Gonzalez-Taboada et al.)
Acknowledgements

• NOAA GFDL / Princeton AOS
 • Minjin Lee, Angel Munoz, John Dunne, Fernando Gonzalez Taboada

• NOAA NMFS
 • John Manderson

• NOAA NOS
 • Mark Monaco, Brian Kinlan, Andrew Leight

• University of Maryland Chesapeake Biological Laboratory
 • Tom Miller, Carlos Lozano, David Secor

• NOAA Chesapeake Bay Laboratory
 • Tom Ihde, Howard Townsend, Bruce Vogt, Rebecca Scott

• NOAA ESRL
 • Mike Alexander, Jamie Scott

• VIMS
 • Mary Fabrizio, R. Latour, D. Kaplan, C. Meynard, D. Gauthier

• Chesapeake Bay Program
 • Mike Mallonee

• USFDA
 • John Bowers

• Funding: NOAA NCCOS, NMFS Office of Science & Technology, NOAA Integrated Ecosystem Assessment (IEA) Program, NOAA OAR

Questions?

(Barbara.Muhling@noaa.gov)