

Three species of *Vibrio* pathogen in the Chesapeake Bay under future climate change scenarios

AOS Atmospheric and Oceanic Sciences

NCC

GFDL Geophysi Fluid Dynamics

Barbara Muhling

John Jacobs, Charles Stock, Carlos Gaitan, Vincent Saba, Desiree Tommasi, Keith Dixon

Vibrio in Chesapeake Bay

- Several species present naturally
- Vibriosis cases in warmer months
 - V. parahaemolyticus most common, V. vulnificus most severe
- Warmer waters associated with higher occurrence of bacteria in the water
- Species-specific salinity ranges

Vibrio in Chesapeake Bay Habitat models

Vibrio and climate change in the Chesapeake Bay

• Jacobs et al. (2015) projected V. vulnificus in water and V. parahaemolyticus in oysters out to 2100

V. parahaemolyticus abundance in

oysters (log du g

0.1

3.5

- Estimated water temperature from near-surface air temperatures
- But: modeled Chesapeake Bay as 1-dimensional
 - Salinity also held constant at 12 psu

Climate model resolution and estuarine environments

- General circulation models (GCMs) too coarse to resolve local-scale dynamics in estuaries
- If we want to represent fine-scale features like estuaries, GCMs must be <u>downscaled</u> to area of interest
- Statistical downscaling: relies on present-day relationships between regional and local-scale processes
 - Low computational cost, can compare multiple GCMs
 - Needs long observational record (~30 years+)

https://www.gfdl.noaa.gov/climate-model-downscaling/

Our modeling framework

• See Muhling et al. 2017 Estuaries and Coasts

Estuaries and Coasts pp 1–24 | <u>Cite as</u>

Authors

Potential Salinity and Temperature Futures for the Chesapeake Bay Using a Statistical Downscaling Spatial Disaggregation Framework

Barbara A. Muhling 🖂 , Carlos F. Gaitán, Charles A. Stock, Vincent S. Saba, Desiree Tommasi, Keith W. Dixon

Authors and affiliations

How will conditions change in the future?

- Two primary sources of uncertainty for long-range projections
 - 1. Representative Concentration Pathway (RCP): how much CO₂ will we emit?
 - We chose to consider the "business as usual" scenario, RCP8.5
 - 2. Variability in projections from different GCMs
 - We selected four GCMs with diverging but plausible temperature and precipitation futures

Future projections: estuarine conditions

- Mean surface water temperatures increased >5°C in the warm/wet model, but only 2-3°C in the cool/wet model
- Salinity was strongly variable, reflecting high uncertainty with precipitation, but increased in the two dry models

Future projections: estuarine conditions

- Spatial variability in warming was less than inter-model variability
 - Greatest warming in upper tributaries, less near continental shelf
- Salinity changes greatest in winter spring, responding to *changing snow melt*
 - Salinity decrease in wetter models, increase in dry models within mesohaline regions

Effects on Vibrio: V. vulnificus

- Increase in probability of occurrence from April through to November
- Summer to fall increases strongest in warmer models, weakest in cool/wet model

Effects on Vibrio: *V. parahaemolyticus*

- Increase in predicted concentration in oysters throughout the year
- Models give similar results winter spring, warmer models associated with higher risk summer fall

Effects on Vibrio: V. cholerae

- Both wet models projected an increase in probability of occurrence in winter spring
- Warm/dry model projected a decrease compared to the recent historical period

V. vulnificus

- Strongest increases in probability of occurrence in mesohaline regions
- Overall increase in high-risk area

V. parahaemolyticus

- Increases in predicted concentration in oysters throughout most of the Bay
- Except regions where salinity remains < 5 psu

V. cholerae

- High-risk areas remain restricted to low salinity areas
- Warming increases probability of occurrence within these areas
- Dry models project contraction of highrisk areas upstream

Conclusions

- Likely increase in occurrence of *V. vulnificus* in the Chesapeake Bay and increase the mean concentration of *V. parahaemolyticus* in oysters by the end of the 21st century
- In contrast, occurrence for *V. cholerae* may increase only in wetter future, high-risk areas are restricted to low salinity zones of the bay
- The length of the high-risk summer season for *V. vulnificus* and *V. parahaemolyticus* is projected to increase
- Implications for future recreational use and seafood extraction from the Chesapeake Bay, with the potential for considerable economic costs as a result
- Downscaled projections are available for other studies and uses

Future work

• High resolution seasonal forecasts of *Vibrio* risk (Gonzalez-Taboada et al.)

Acknowledgements

- NOAA GFDL / Princeton AOS
 - Minjin Lee, Angel Munoz, John Dunne, Fernando Gonzalez Taboada
- NOAA NMES
 - John Manderson
- NOAA NOS
 - Mark Monaco, Brian Kinlan, Andrew Leight
- University of Maryland Chesapeake Biological Laboratory
 - Tom Miller, Carlos Lozano, David Secor
- NOAA Chesapeake Bay Laboratory
 - Tom Ihde, Howard Townsend, Bruce Vogt, Rebecca Scott
- NOAA ESRL
 - Mike Alexander, Jamie Scott
- VIMS
 - Mary Fabrizio, R. Latour, D. Kaplan, C. Meynard, D. Gauthier
- Chesapeake Bay Program
 - Mike Mallonee
- USFDA
 - John Bowers
- Funding: NOAA NCCOS, NMFS Office of Science & Technology, NOAA Integrated Ecosystem Assessment (IEA) Program, NOAA OAR

(Barbara.Muhling@noaa.gov)

Authors and affiliation

Potential Salinity and Temperature Futures for the Chesapeake Bay Using a Statistical Downscaling Spatial **Disaggregation Framework**

Barbara A, Muhling 🖂 , Carlos F, Gaitán, Charles A, Stock, Vincent S, Saba, Desiree Tommasi, Keith W, Dixor

GeoHealth AN OPEN ACCESS AGU JOURNAL Explore this journal > 3 Open Access 💿 🛈 Creative Commons **Research Article** Projections of the future occurrence, distribution, and

seasonality of three Vibrio species in the Chesapeake Bay under a high-emission climate change scenario

Barbara A. Muhling ⊠, John Jacobs, Charles A. Stock, Carlos F. Gaitan, Vincent S. Saba