APECOSM *(Apex Predators ECOSystem Model)*

Quick overview and application to scenarios development

Olivier Maury

Olivier.maury@ird.fr
Global changes are pushing oceans’ ecosystems toward unknown states with no-analogues in the past.

This creates an urgent need for

- Anticipating future threats and opportunities.
- Elaborating mitigation and adaptation strategies,
- Factoring long-term issues into present day governance.

We lack a robust theory that would keep valid beyond observed states with minimal stationarity assumptions.

APECOSM seeks for a mechanistic theory based on first principles to formalize ecosystem dynamics

- Understand, interpret and generalize observations,
- Guide and stimulate empirical studies,
- Provide sound basis to applications: conservation, resource management, scenarios & projections.

Conceive and think the complexity of ecosystems’ dynamics and evolution
Formulate individual dynamics from invariant properties,
- Predation, metabolism (DEB) (Maury et al., 2007; Maury et Poggiale, 2013)
- Behaviour: 3D movements (Faugeras et Maury, 2007)
- Effects of schools dynamics (Maury, 2017)

Upscale the individual model to population level
- Population dynamics based on individual processes (Maury, 2010)
- Eulerian state equation
- Individual flux through a 7D state-space

Upscale the population model to the community level
- Considers the functional importance of species’ size and individuals’ size (Maury et al., in press)
Formulate individual dynamics from invariant properties,

- Predation, metabolism (DEB) \((\text{Maury et al., 2007; Maury et Poggiale, 2013})\)
- Behaviour: 3D movements \((\text{Faugeras et Maury, 2007})\)
- Effects of schools dynamics \((\text{Maury, 2017})\)

Upscale the individual model to population level

- Population dynamics based on individual processes \((\text{Maury, 2010})\)
- Eulerian state equation
- Individual flux through a 7D state-space

Upscale the population model to the community level

- Considers the functional importance of species’ size and individuals’ size \((\text{Maury et al., in press})\)
- Trait-based approach \((\text{Maury et Poggiale, 2013})\)
- Eulerian 4D state equation \((\text{Guiet, 2016})\)

Consistency between organization levels

Inter-dependence of the state equations at each level of organization

Individuals, populations & communities share the same parameters
APECOSM, an E2E model of marine ecosystems

- Mechanistic model articulating individual, population and community levels

- APECOSM represents 3 pelagic communities (x, y, z, l, Lm)
Mechanistic model articulating individual, population and community levels

APECOSM represents 3 pelagic communities (x, y, z, l, Lm)

For studying processes

For projections and scenarios

Guiet et al., 2016

Lefort et al., 2015
APECOSM simulates marine ecosystems

- Articulates species and communities

- Global horizontal grid ORCA2 (x=180 y=148 z=46)
- Size V=100 size classes [1mm, 2m]
- 3 generic communities
 => 6,6.10^8 grid points; 2 time steps / day
Communities in APECOSM: 5D numerical grid

Epipelagic 4mm

Epipelagic 25cm

Size $V^{1/3}$

Depth z
APECOSM is coupled to the IPSL Earth System Model
Projections:

Climate change impacts on global marine ecosystems (Lefort et al., 2015)

Projected global averaged change from 1860 to 2100

Size integrated anomalies of biomass (1mm to 2m) (2096-2105)-(2006-2015)
Process studies

Temperature and primary production effects on marine communities (Guiet et al., 2016)
Climate impacts on tunas (Dueri et al., 2014)

Exploitable biomass - no fishing

Total biomass - no fishing

Biomass Indian Ocean (equatorial transect)
Feedbacks from ecosystems to biogeochemistry, carbon cycle and climate
APECOSM can be coupled 2-ways to NEMO-PISCES

- **Biomass (log)**
 - **PISCES**
 - Nano-phytoplankton: 1-10 \(\mu m \)
 - Diatoms: 10-100 \(\mu m \)
 - Micro-zooplankton: 20-200 \(\mu m \)
 - Meso-zooplankton: 200-2000 \(\mu m \)
 - SPOM-I POM: 100-5000 \(\mu m \)

- **NEMO**
 - "u, v, d, T"

- **APECOSM**
 - "O\(_2\), PAR"
 - "Predation"
 - "Epipelagic migratory mesopelagic"

- **Gases**
 - NH\(_4^+\)
 - NO\(_3^-\)

- **DOM**
 - "Excretion"
 - "Egestion"

- **Mortality**
Feedback of ecosystems to the carbon cycle in the IPSL-CM5 earth system model

Active export / POC at 150m (annual mean)

Global Budget in GtC/yr (150m)

<table>
<thead>
<tr>
<th></th>
<th>Flux (GtC/yr)</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>POC flux</td>
<td>5.1</td>
<td>68%</td>
</tr>
<tr>
<td>DOC flux</td>
<td>1.1</td>
<td>15%</td>
</tr>
<tr>
<td>Active flux</td>
<td>1.3</td>
<td>17% (20%)</td>
</tr>
<tr>
<td>Total</td>
<td>7.5</td>
<td>100%</td>
</tr>
</tbody>
</table>

Aumont et al., in review
Integration from climate to fishing
Governance strategies (APECOSM-E; RCP8.5 / SSP3)

Dueri et al., 2016

2010

- Catches maximisation
- Profit maximisation
- No regulation

2095

- Catches maximisation
- Profit maximisation
- No regulation

Conservation

Skipjack price

Food security

Employment

Profit of companies

Rent

Profit / vessel

No regulation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

No regulation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent

Profit of companies

Food security

Employment

Skipjack price

Conservation

Profit of companies

Food security

Employment

Skipjack price

Conservation

Rent
Conclusion

APECOSM: a tentative to progress a mechanistic theory of marine ecosystems,
- Articulates individual, population and community levels,
- Represents socio-ecosystems through coupling with physics, biogeochemistry and bio-economy

APECOSM contributed to FISHMIP phase 1
- Couldn’t run with GFDL forcing that was provided 2D
- Had tremendous problems with IPSL-CM forcing’s due to problems with the regridded files provided
 ➞ Recommend using native grids for forcing files

FishMIP phase 2 has a great potential but great challenges ahead
- Extend OSPs (SSPs) to represent global fisheries including quantitative effort pathways
- Develop a set of contrasted global marine ecosystems & fisheries scenarios by combining compatible RCPs and OSPs
- Undertake an actual comparison of models
- Synoptic observations are critically lacking for calibrating, assessing & improving the models
 ➞ Promote global acoustic data collection and compilation
Building scenarios for global marine socio-ecosystems

From «Shared Socio-economic Pathways (SSPs)» to «Oceanic System Pathways»

Maury et al., 2017

Faire de la construction de scénarios une démarche participative impliquant les acteurs

- CLIOTOP, RFMOs, NGOs, industrie, FAO, ...
- Réintégrer le long terme à la gestion,
- Elaborer des stratégies de gouvernance vers la durabilité
- Evaluer les alternatives et les options