Response of O₂ and pH to ENSO in the California Current System in a high resolution global climate model

Giuliana Turi, Mike Alexander, Nikki Lovenduski, Antonietta Capotondi, Jamie Scott, Charlie Stock, John Dunne, Jasmin John, and Mike Jacox

Response of O₂ and pH to ENSO in the California Current System in a high resolution global climate model

Did all the work but has a new job

Is attending a wedding

Got stuck giving the talk

Giuliana Turi, Mike Alexander, Nikki Lovenduski, Antonietta Capotondi, Jamie Scott, Charlie Stock, John Dunne, Jasmin John, and Mike Jacox

The California Current System

Why pH and O_2 ?

Shallowest depth with pH < 7.75

depth (m)

Why a high-resolution model? Chlorophyll standard deviation Low-resolution model High-resolution model **SeaWiFS** (ESM₂M) (ESM2.6) 50N 50N 50N 40N 40N 40N 30N 30N 30N 140W 130W 120W 140W 130W 120W 140W 130W 120W (σ) 0 Turi et al. (2018) 2

Why a global model? SST anomaly during "typical" El Nino

Fiedler and Mantua (2017)

GFDL ESM2.6

Composite analysis: GFDL ESM2.6

Turi et al. (2018)

-2

-1

What drives the O₂ changes?

warm minus cold hypoxic depth

Turi et al. (2018)

What drives the pH changes?

Not all El Nino's are the same!

Conclusions

ESM2.6 is a novel, high resolution coupled model that represents ocean biogeochemistry and ecosystem dynamics

ENSO induces large changes in O_2 and pH in the California Current; the surface and subsurface expressions of these changes can differ

ΔO_2 , warm event #2 ΔO_2 , warm event #6

There are large differences in the response of California Current O₂ and pH to ENSO events; not all events are the same

Want to learn more? Turi, G., et al., 2018: Ocean Science, doi:10.5194/os-14-69-2018.

The End!

Not all El Nino's are the same !

Not all El Nino's are the same !

GFDL ESM2.6 FMA O₂

Not all El Nino's are the same !

Not all La Nina's are the same !

Lanczos high-pass (10-year cutoff) filter

GFDL Ninos

50

-4

-2

500

