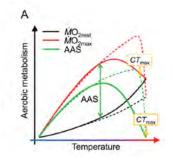
Sizing the effects of temperature on fish

A general size - and trait-based model to predict temperature impact on ectotherms

Philipp Neubauer Ken H. Andersen

MARSDEN FUND

TE PŪTEA RANGAHAU A MARSDEN



Physiology of temperature impacts

A range of eco - physiological models have been formulated, yet the general physiological principles of temperature impacts on ectotherms themselves are still vigorously debated*.

Prominent view is that the available oxygen beyond routine activity (metabolic scope) determines thermal performance and niches.

Oxygen supply may not be limiting in many species – scopes increases with temperature.

from Lefevre 2016 Cons. Phys.

* Brander et al 2013 ICES JMS Lefevre 2016 Cons. Phys. Pörtner et al. 2017 J. Exp. Biol. Jutfelt et al. 2018 J. Exp. Biol.

Physiology of temperature impacts

A range of eco - physiological models have been formulated, yet the general physiological principles of temperature impacts on ectotherms themselves are still vigorously debated*.

Prominent view is that the available oxygen beyond routine activity (metabolic scope) determines thermal performance and niches.

Oxygen supply may not be limiting in many species – scopes increases with temperature.

Despite a large body of experiments, no general mechanistic model exists to understand temperature driven physiological changes and resulting ecological outcomes.

* Brander et al 2013 ICES JMS Lefevre 2016 Cons. Phys. Pörtner et al. 2017 J. Exp. Biol. Jutfelt et al. 2018 J. Exp. Biol.

Traits of a general model:

1. Should be parsimonious: reflect both ecology and physiology in as much detail as necessary, and as little detail as possible.

2. Should not be based on a single species but on life - history traits.

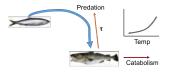
3. Should produce predictions that can be confronted with data.

Traits of a general model:

1. Should be parsimonious: reflect both ecology and physiology in as much detail as necessary, and as little detail as possible.

2. Should not be based on a single species but on life - history traits.

3. Should produce predictions that can be confronted with data.



Building blocks

Bio-energetic balance:

$$P = S - D$$
$$P = (1 - \beta - \phi) f T_h h w^q - k T_k w^n$$

$$f = \frac{\tau \gamma w^{p} \Theta}{\tau \gamma w^{p} \Theta + T_{h} h w^{q}}$$

Building blocks

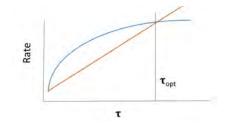
Increasing activity comes at a cost.

$$P = S - D$$

$$P = (1 - \beta - \phi) f T_h h w^q - k T_k w^n$$

$$- \tau \delta k T_k w$$

$$f = \frac{\tau \gamma w^p \Theta}{\tau \gamma w^p \Theta + T_h h w^q}$$


$$M = (m_0 + \tau m_\tau) w^{1-p}$$

To each temperature corresponds an optimal activity level τ_{opt} – no gain with more activity beyond τ_{opt} : f saturates, but metabolic costs and mortality increase

Optimum found by maximizing $P(\tau)/M(\tau)$

Building blocks

 O_2 demand of feeding and energy metabolism represents a hard limit for activity.

$$P_{0_2} = S_{O_2} - D_{O_2}$$

= $f_{O_2} w^n - \omega (\beta f T_h h w^q + k T_k w^n - \tau \delta k T_k w)$

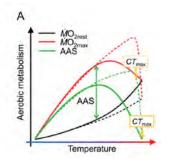
 S_{O2} is the maximum oxygen supply, P_{O2} is the metabolic scope.

Traits of a general model:

1. Should be parsimonious: reflect both ecology and physiology in as much detail as necessary, and as little detail as possible.

2. Should not be based on a single species but on life-history traits.

3. Should produce predictions that can be confronted with data.



Trait based scenarios

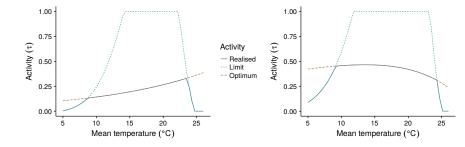
Slow vs fast life history:

- · lower resting metabolism,
- · lower maximum consumption,
- higher mortality risk from foraging relative to non active state.

Presenting results for species with dome-shaped oxygen supply $(MO2_{max})$ only.

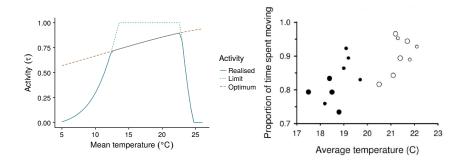
Traits of a general model:

1. Should be parsimonious: reflect both ecology and physiology in as much detail as necessary, and as little detail as possible.


2. Should not be based on a single species but on life - history traits.

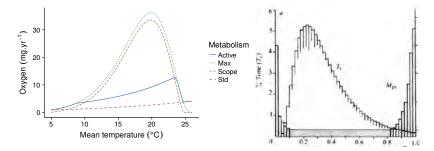
3. Should produce predictions that can be confronted with data.

Activity and oxygen limitation


Increasing temperature leads to **increased activity** in most cases along the slow - vs. fast trait axis.

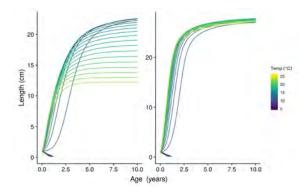
Activity and oxygen limitation

Increasing temperature leads to **increased activity** in most cases: age 0 lake trout

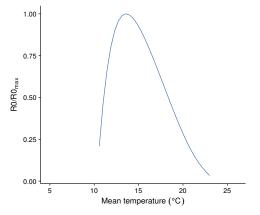


Biro et al. 2007, PNAS

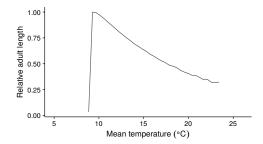
Activity and oxygen limitation


Oxygen is limiting at extreme temperatures – at intermediate temperatures it is not optimal to utilize the full scope, even for highly active species.

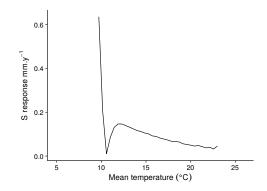
Priede 1977, Nature



Growth peaks at higher temperature, yet leads to smaller individuals...especially in environments of low food availability.



... but fitness trend usually opposes growth response – **fitness** highest at low or intermediate temperatures.

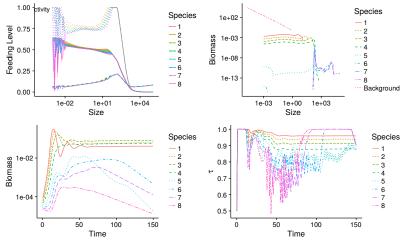


Fitness trend can be used to estimate fitness gradients and selection response to temperature - e.g., change in size - at - maturation

Fitness trend can be used to estimate fitness gradients and selection response to temperature - e.g., change in size - at - maturation

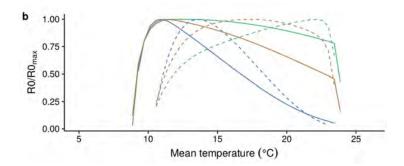
What does this buy us?

1. Our general model *explains* general observations of temperature response:

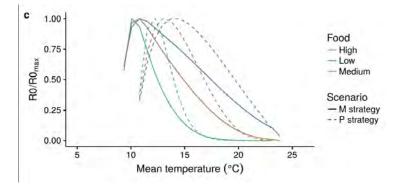

- Species being found at lower temperatures than "optimal" growth and metabolic scope,
- Smaller individuals at high temperature: the temperature size rule,
- Increased activity with temperature.
- 2. We can use this framework to derive general *predictions*:
 - Organism size responds to temperature, both via phenotypic plasticity (immediate) and selection (slow!).

3. Size - and trait - based formulation means the framework can be *applied* in size - based ecosystem models.

Post-script


With temperature and adaptive foraging, dynamics are unstable...

Post-script


Fitness trends depend on activity cost - more efficient foraging leads to shift in temperature optimum to higher temperatures.

Post-script

Fitness trends depend on food - more available food leads to a slower decline of fitness with higher temperatures.

