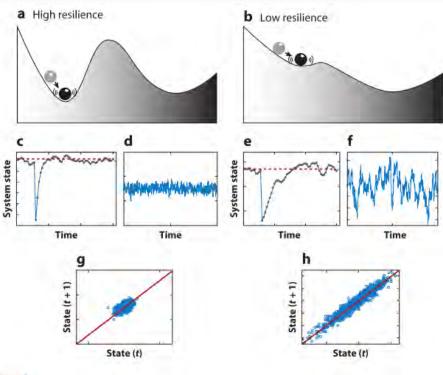

Coastal Aquatic Ecosystems Under Stress: PICES experiences

Thomas W. Therriault Fisheries and Oceans Canada Pacific Biological Station


Ocean Health Index

Ecosystem Management

Ecosystem Resilience

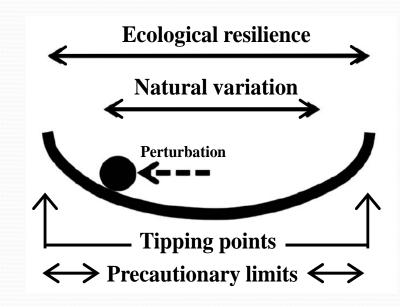
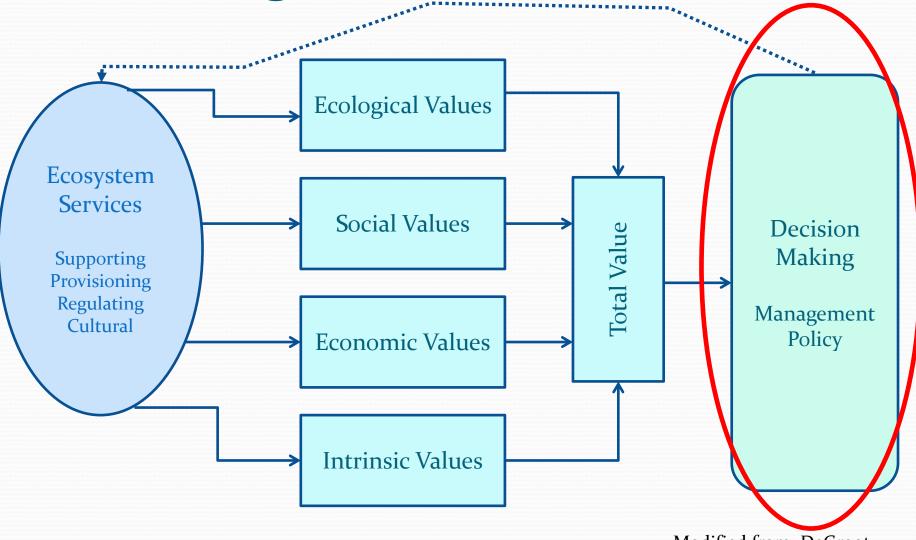


Figure 2

Critical slowing down as an indicator of low resilience. Recovery rates upon perturbations (c and e) are slower when the basin of attraction is shallow (panels b, e, f, b) than when the basin of attraction is deeper (panels a, c, d, g). The effect of this slowness is reflected in natural (externally driven) fluctuations in the state of the system (d and f) and can be detected as increased temporal autocorrelation and variance (g and b). Abbreviation: t, time. Figure adapted from Scheffer et al. (2012a) with permission.

Scheffer et al, 2015, Annu Rev Ecol Evol & Syst


Identifying Tipping Points

Overall Goal (could be)

To identify the need to develop a **general framework** to inform sustainable ocean management and policy implementation by evaluating ecosystem resilience to multiple stressors that consider spatial and temporal scales.

Informing Sustainable Use

Modified from: DeGroot 2002

Multiple pressures in the North

Pacific

Land-based Nutrients (fertilizer)
 Organic pollutants (pesticides)
 Inorganic pollutants (impervious surfaces)
 Direct human (population density)
 Ocean-based Oil rigs

- Invasive species
 - Ocean pollution
 - Shipping
- **Fishing** Artisanal fishing Pelagic, low-byca
 - Pelagic, low-bycatch fishing
 - Pelagic, high-bycatch fishing Demersal, destructive fishing
 - Demersal, non-destructive, low-bycatch fishing
 - Demersal, non-destructive, high-bycatch fishing

Climate

UV

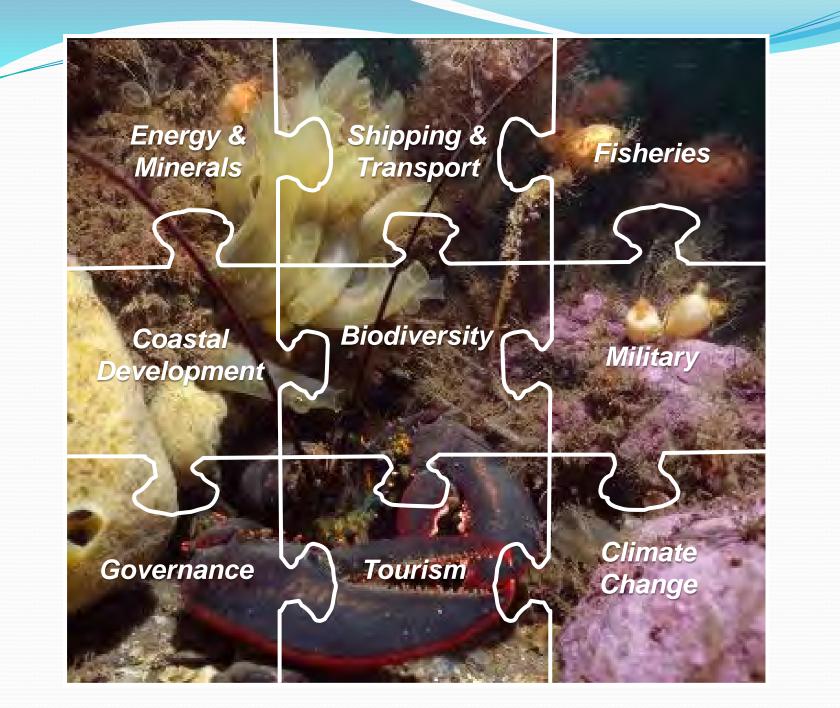
SST

Ocean acidification

Halpern et al. 2008 Science

PICES FUTURE AP-AICE Survey

Stressors	% Low	% Med	% High
Climate change	5	17	79
Sea level change	17	45	38
Loss of Sea Ice	20	17	63
Нурохіа	17	24	60
Ocean acidification	21	48	31
Nutrient Loading	14	31	55
Organic Pollutants	10	31	60
Inorganic Pollutants (heavy metals)	29	31	40
Human Alteration of Upland Systems	7	29	64
Capture Fisheries	7	26	67
Aquaculture	10	33	57
Non-indigenous Species (NIS)	7	44	49
Harmful Algal Blooms (HABs)	7	29	64
Habitat Loss	10	35	55
Oil and Gas Exploration and Mining	39	24	37
Alternate Energy Production	43	29	29
Dredging/Sand Extraction	36	29	36
Recreational Activities	31	33	36
Land reclamation (from sea)	31	17	52
Noise pollution	52	26	21
Illegal Fishing	33	24	43
Wind-induced Upwelling	24	26	50
Marine Debris/Litter	19	29	52


Survey was conducted at the start of the PICES FUTURE Program

Some stressors universally high like Climate change

Importance of some stressors likely vary geographically

Some stressors likely have increased in importance since initial survey

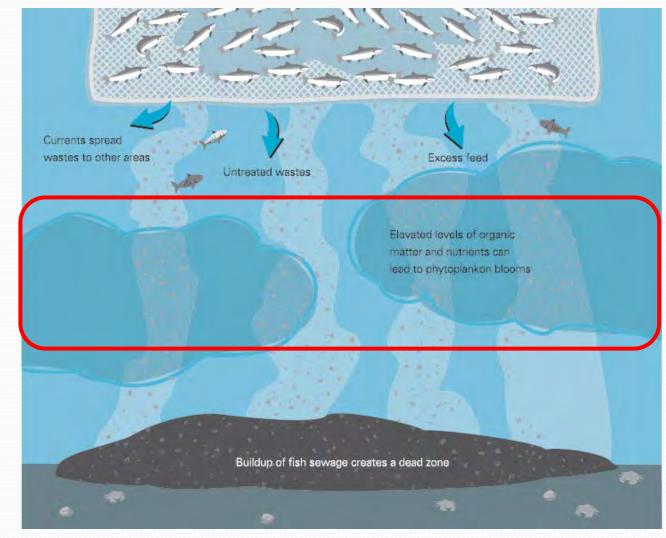
Noise pollution Marine debris/litter

Currents spread wastes to other areas

Untreated wastes

Excess feed

Elevated levels of organic matter and nutrients can lead to phytoplankon blooms


Buildup of fish sewage creates a dead zone

Increased nutrient load due to landbased or sea-based farming

Buildup of fish sewage creates a dead zone

Increased nutrient availability allows larger populations of plankton

Currents spread wastes to other areas

Untreated wastes

Excess feed

Elevated levels of organic matter and nutrients can lead to phytoplankon blooms

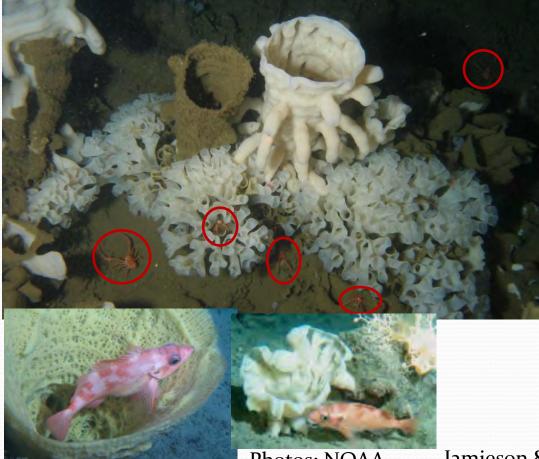
As wastes and plankton break down, an oxygendepleted area is created

NRC 2000

- *Cochlodinium polykrikoides* blooms have been increasing in frequency and spatial area in the Northwest Pacific
- Possibly due to eutrophication and/or climate change
- Large economic impacts (in addition to ecological ones) of blooms:

GEOHAB 2010

- 180 million yen damage in the Yatsushiro Sea in 1979
- 8 billion yen in Imari Bay in 1999
- 40 billion yen in Yatsushiro Sea in 2000
- 76.5 billion Korean won in 1995
- 2.1 billion won in 1996
- 1.5 billion won in 1998


Fisheries

- Direct impacts of removals on stocks and bycatch
- Also can result in significant habitat damage/degradation issues

Fisheries

Glass sponge reefs

- Important benthic structural habitat
- Provide habitat and refuge for many aquatic species, including rockfish, flatfish, spider crab, box crab, king crab, shrimp, prawns, and euphausiids

Photos: NOAA

Jamieson & Chew 2002. RD 2002/122. DFO/2010-1663

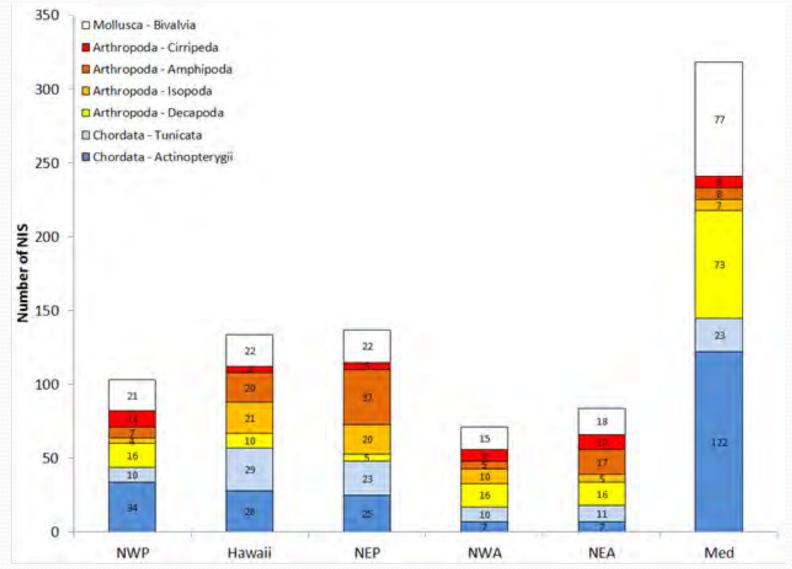
Photo: Sally Leys

Fisheries

Glass sponge reefs

Photo: Jackson Chu and Sally Leys / ROPOS

- Sensitive habitat is damaged by fishing gear, including trawls and dredges
- Slow to regrow
 (50-200 years), and
 some never return
- Habitat and associated species are lost


Jamieson & Chew 2002. RD 2002/122. DFO/2010-1663

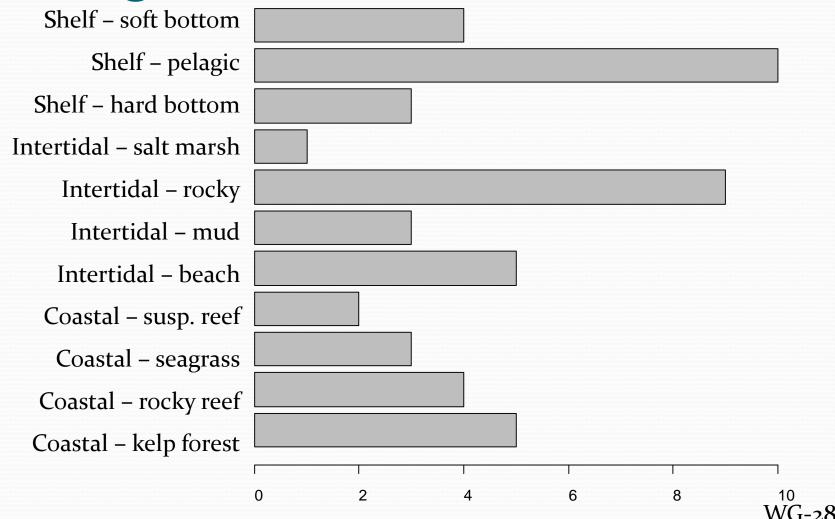
Invasive Species

- NIS are second only to habitat loss when it comes to loss of native biodiversity
- NIS pose significant ecological/biological/genetic risks
- NIS pose significant risks to sustainable fisheries and aquaculture (i.e., tunicates and shellfish aquaculture)
- Global NIS introductions have increased substantially in recent years

Invasive Species

WG-21

Invasive Species – Climate Change


- Some NIS are experiencing greater invasion success due to climate change
- Climate change also affecting NIS vectors (i.e., shipping via the Arctic)
- NIS are interacting with other coastal stressors resulting in greater ecological/economic impacts

Stressors Per Habitat: Seto Inland Sea

Shelf - pelagic water column				
Intertidal - rocky				
Intertidal – mud				
Intertidal – beach				
Coastal - suspension-feeder reef				
Coastal - subtidal soft bottom				
Coastal – seagrass				
Coastal - rocky reef				
Coastal - kelp forest				
	[1	1	7
	0	5	10	$^{15}WG_{-2}$

Stressors Per Habitat: Strait

of Georgia

Habitats per Stressor: Seto Inland

Sea Species invasion					
Sediment input					
Sea temperature					
Sea level change					
Pollution from ocean					
Pollution from land					
Offshore development					
Nutrient input					
Hypoxia					
HABs					
Freshwater input					
Fishing – pelagic					
Fishing - illegal]			
Fishing - demersal					
Ecotourism]	
Direct human impact					
Commercial activities					
Coastal engineering					
Coastal development					
Aquaculture					
		1			
	0	2	4	6	8 WG-28

Habitats per Stressor: Strait

of Georgia

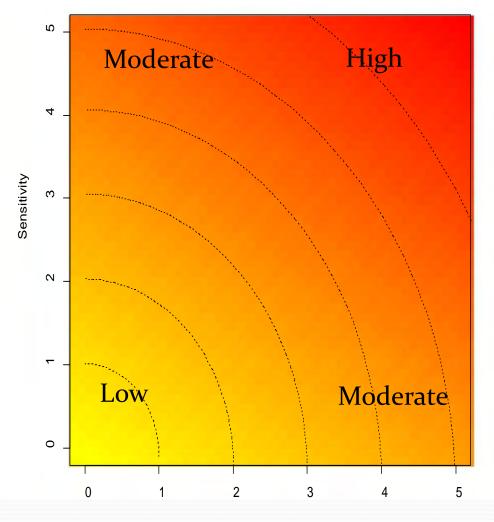
Species invasion Pollution/contaminant Hypoxi HAB Fishing – pelagi Fishing - demersa Direct human impact Coastal engineerin Coastal developmen Climate Chg – tem Climate chg - sea leve Sedimen Nutrient Freshwate Aquacultur

IS								
S								
a								
s								
C								
al								
S								
g								
nt								
р								
el								
nt								
S								
er								
e								
	0	1	2	3	4	5	6	7 WG-28

Main pressures impacting western Pacific ecosystems

East China Sea, Seto Inland Sea, Kuroshio/Oyashio

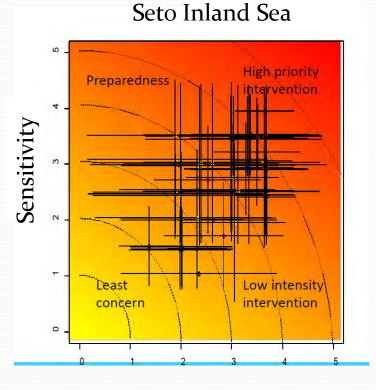
Activities/Stressors	ECS/YS	SETO	K/O
1. Pollution from land	2.7	3.0	
2. Coastal engineering	3.4	3.2	
3. Coastal development	3.4	3.2	
4. Direct human impact		3.0	
5. Ecotourism		2.3	
6. Commercial activity		3.0	
7. Aquaculture		3.0	
8. Fishing - demersal	3.5	2.9	2.8
9. Fishing - pelagic	2.6	2.7	3.3
10. Fishing - illegal		2.6	
11. Offshore development	2.1	2.9	
12. Pollution from ocean	3.1	2.9	
13. Freshwater input	2.9	2.7	
14. Sediment input	2.5	2.8	
15. Nutrient input	2.9	3.1	3.0
16. HABs	2.8	2.7	
17. Hypoxia	3.2	2.8	3.0
18. Species invasion	2.5	2.9	
19. Sea level change		3.1	3.2
20. Sea temperature	3.2	3.5	3.2


Coastal development and engineering have strong impacts to the ECS/YS and the Seto Inland Sea.

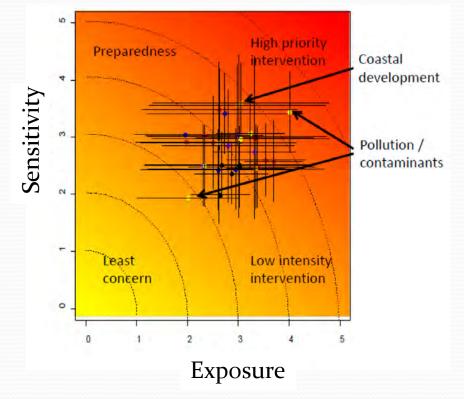
Demersal and pelagic fishing impact the ECS/YS and the K/O, respectively.

Nutrient input has resulted in HABs and Hypoxia in summer.

Increasing sea temperature strongly affects all 3 ecosystems.


Risk Perceptions

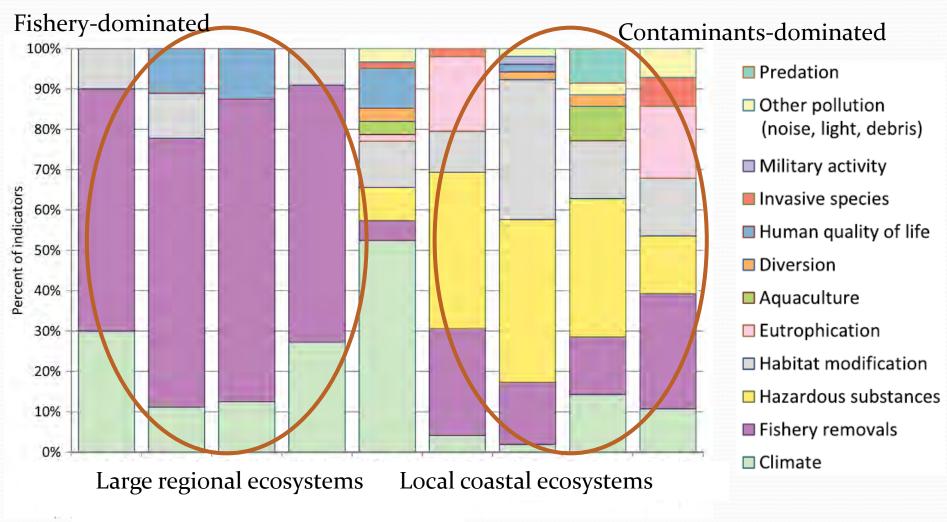
Exposure


WG-28

Risk related to Stressors

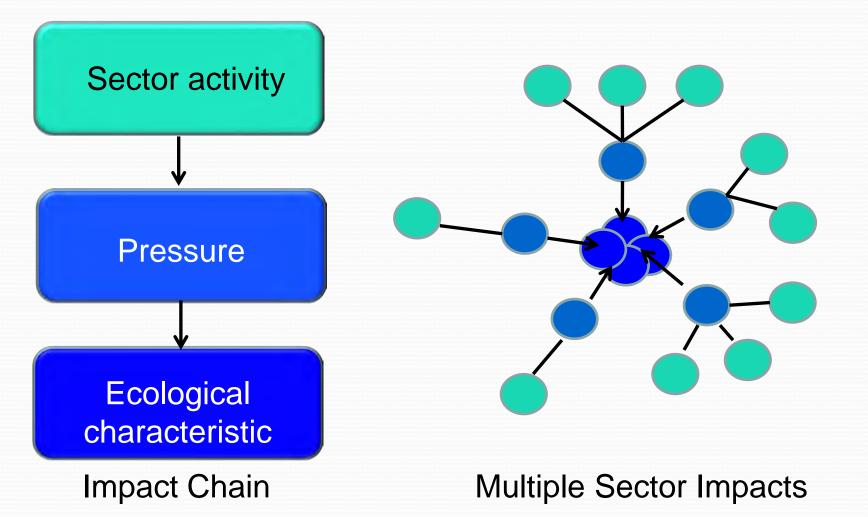
Exposure

Strait of Georgia

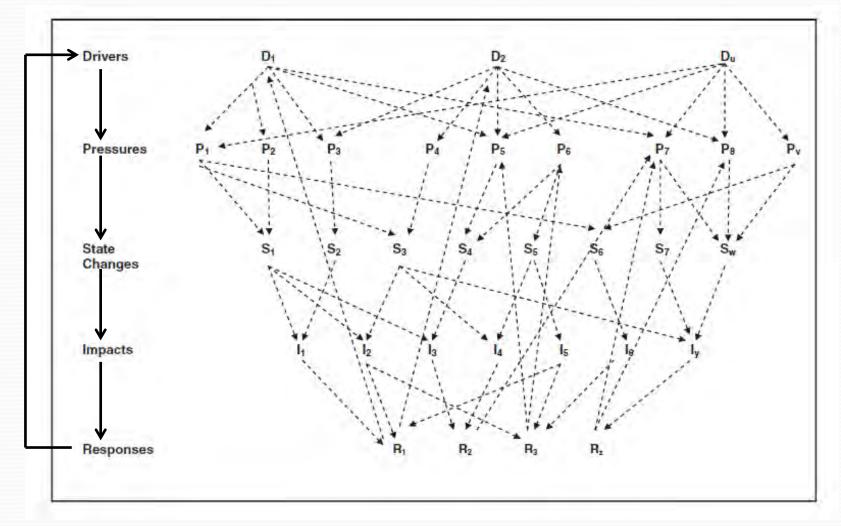


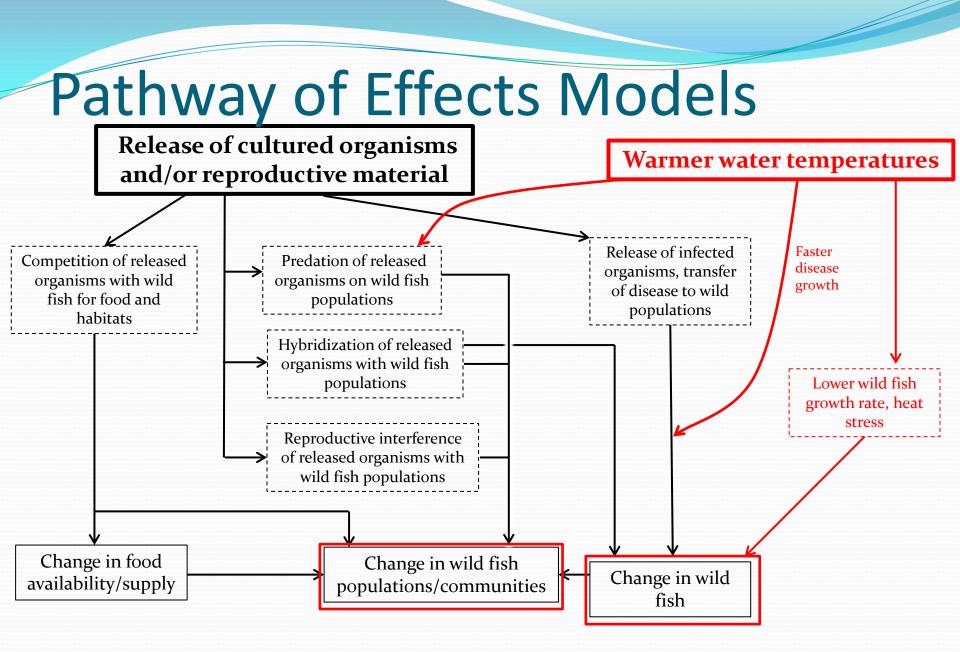
Drivers and Metrics

Driver / Stressor	Examples of metrics
Climate	- Temperature - Large-scale climate pattern - Salinity
Exploitation	 Fishing effort Catch/landings Fishing mortality
Pollution	- Nutrient loading - Oxygen - Water clarity
Food web	 Predator/prey biomass, abundance Primary production, nutrients Density dependence

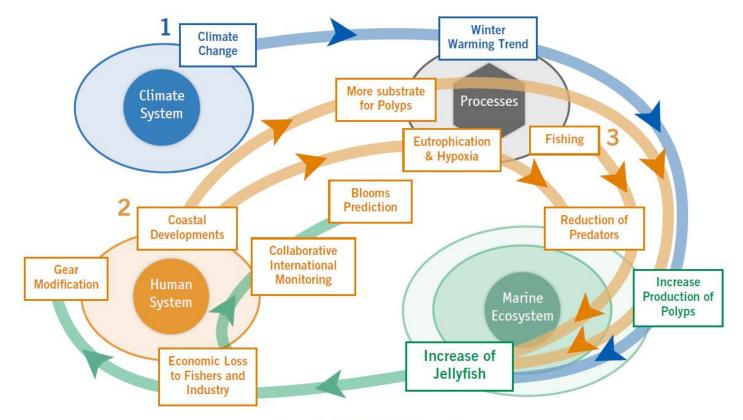

Hunsicker et al. 2016

Indicators among Ecosystems



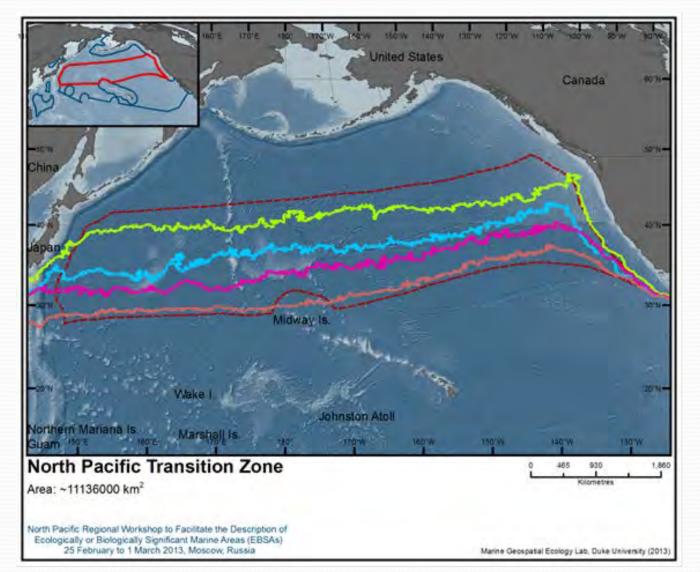

Boldt et al. 2014

Single vs. Multiple Stressors


Driver-Pressure-State-Impact-Response (DPSIR)

Adapted from Leggatt et al. 2010. Pathway of effects of escaped aquaculture organisms or their reproductive material on natural ecosystems in Canada. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/019. vi + 70 p.

PICES FUTURE SEES Approach



Case 1: Jelly Fish Blooms

Informing Management/Policy

- Using Ecologically and Biologically Significant Areas (EBSAs) as a Case Study
- PICES participated in a Workshop to Identify EBSAs in the North Pacific hosted by the Secretariat of the Convention on Biological Diversity (CBD)
- This workshop produced 20 EBSAs but will focus on the North Pacific Transition Zone

The NPTZ EBSA

EBSA Criteria for NPTZ

CBD EBSA Criteria	Description	Ranking of Criterion Relevance			
		No Data	Low	Medium	High
Uniqueness or Rarity			Х		
Special importance for life-history stages of species					Х
Importance for threatened, endangered or declining species and/or habitats					Х
Vulnerability, fragility, sensitivity, or slow recovery			Х		
Biological productivity					Х
Biological diversity				Х	
Naturalness				Х	

EBSA Criteria Gaps

- But the template doesn't explicitly collect information on the key <u>activities/stressors</u> within the potential EBSA that could inform management or policy development
- Even if some activity/stressor information is included by assessors:
 - multiple stressor/cumulative effects often are ignored
 - spatial/temporal scales are not specified

Summary: Informing Management/Policy

- PICES, like other international/national programs, has contributed to better understanding stressorimpact relationships in the North Pacific
- There is substantial interest from member nations to better understand multiple stressors/cumulative effects and PICES is well positioned to work on this

Looking Forward: Informing Management/Policy

- Within PICES this could include new elements in the North Pacific Ecosystem Status Report
- Beyond PICES this could include reports like World Ocean Assessment II
- However, to truly move to a fully-integrated ecosystem-based approach (beyond fisheries) will require the development of a framework to inform sustainable ocean use

Acknowledgements

- PICES for partial travel support
- The many members of various PICES expert groups who provided information/data presented here and J Nelson for collating background information

Questions?