Peculiarities of climatic and oceanological influence on long-term changes in species composition and abundance of pelagic and bottom fishes in the Tatar Strait

Velikanov A.Ya., Kim Sen Tok
e-mail: velikanov@sakhniro.ru
Hydrologic regime of the Tatar Strait is determined by the two non-periodic currents: cold (in the western part) and warm (in the eastern part).

Fish communities of the Tatar Strait are represented by species from different biogeographic and ecological groups.

Species composition of ichthyofauna of the Tatar Strait varies significantly due to the periodic migrations of the south-latitude fishes.

In the 20th century, Tatar Strait was rather important for fishery in the Russian zone of the Sea of Japan and particularly along Sakhalin Island (annual catch of herring reached 350 000 tons, sardine – 160 000 tons, walleye pollock – 140 000 tons, and Pacific cod – 50 000 tons).

By the end of the last century, the stock abundances of many common fish species (walleye pollock, Pacific cod, sardine, and capelin) declined so that their commercial fishery was stopped.
Basic tasks:
- to reveal trends of long-term changes in abundance for common pelagic and bottom fishes in the Tatar Strait in 1950-2005;
- to reveal occurrence (absence) of conjugation of the long-term changes in climatic and oceanological factors and fish abundances.

Data Sources


3. Long-term abundance estimates of herring, pollock, yellow-fin sole by VPA method.


Dynamics of PDO Winter Index in 1901-2006 (upper; Batchelder, Kim, 2006) and Siberian High Index in 1950-2001 гг. (lower; Panagiotopoulos et al, 2005)

Anomalies (vertical bars) and their cumulative sums (circles) for the four climatic indices from 1950 to 2004 (Tian et al, 2008)
Long-term changes of water temperature in the 50-150 m layer in north-western (top), south-eastern (middle) and south-western (bottom) parts of Japan/East Sea during 20th century (Ponomarev et al, 2000)

Long-term changes of water temperature: (top) along south-western Sakhalin (Antonovskiy transect, layer 50-100 m, May 1924-1999 (after Kantakov, 2000); (middle) mean year temperature (layer 0-200 m, 1950-1992) (after Karpova, Shatilina, 2000); (bottom) along western Hokkaido (200 m depth, 1964-2003 (after Tian et al,2008)
### List of warm-water fish species near the west coast of Sakhalin Island in the 20th and Early 21st centuries (based on published and own data)

<table>
<thead>
<tr>
<th>Species</th>
<th>Years</th>
<th>Species</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Isurus oxyrhynchus</em> or <em>Carcharodon carcharias</em> (?)</td>
<td>1951</td>
<td><em>Oplegnathus fasciatus</em></td>
<td>1946, 1948</td>
</tr>
<tr>
<td><em>Pterothrissus gissu</em></td>
<td>1980</td>
<td><em>Ernogrommus hexagrammus</em></td>
<td>1947-1949</td>
</tr>
<tr>
<td><em>Hyporhamphus sajori</em></td>
<td>1948, 1975</td>
<td><em>Thamnaconus modestus</em></td>
<td>1975</td>
</tr>
<tr>
<td><em>Sebastes wakiyai</em></td>
<td>2001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Periodicity of migrations of some subtropical fish species to the Tatar Strait in 1910-2008

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific sardine</td>
<td>?</td>
<td>+</td>
<td>(+) - (+)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>(+) -</td>
<td>-</td>
</tr>
<tr>
<td>Japanese anchovy</td>
<td>?</td>
<td>+</td>
<td>(-) +</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>- (+)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pacific saury</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dolphin–fish</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Swell fishes puffers</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>
Distribution of Japanese anchovy in 2002 (left panel), some other south-latitude fish species near the Sakhalin coast in 2000-2005 (right upper panel) and Pacific sardine in the Japan/East Sea in the end of the 1970s-early 1980s (right low panel; from Dudarev, Kenya, 1986),
Dynamics of herring, pink salmon and walleye pollock catches in the Tatar Strait during 1950-2000

Annual catches of Pacific sardine in the Tatar Strait (top) and near the western coast of Japan (bottom) during 1965-2000

Herring

Pink salmon

Walleye pollock

Sardine

Squid
Dynamics of biomass stock (left) and recruitment abundance (right) of walleye pollock near the western coast of Sakhalin during 1989-2005

Data on walleye pollock egg concentrations sampled in the Tatar Strait in different years (eggs/m²).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-51°N</td>
<td>no data</td>
<td>1.-2000</td>
<td>2.0-550</td>
<td>2.-550</td>
<td>2.0-10.</td>
<td>2.0-4.0</td>
<td>2.0-10.</td>
<td>no data</td>
<td>0.00</td>
</tr>
<tr>
<td>46-49°N</td>
<td>100-2000</td>
<td>1.-2000</td>
<td>2.0-550</td>
<td>2.0-550</td>
<td>2.0-32.</td>
<td>2.0-76.</td>
<td>2.0-14.</td>
<td>2.0-8.0</td>
<td>2.0-8.0</td>
</tr>
<tr>
<td>46-51°N</td>
<td>no data</td>
<td>1.-2000</td>
<td>2.0-550</td>
<td>2.0-550</td>
<td>2.0-32.</td>
<td>2.0-76.</td>
<td>2.0-14.</td>
<td>no data</td>
<td>2.0-8.0</td>
</tr>
</tbody>
</table>

Stock abundance dynamics of Sakhalin-Hokkaido herring during 1990-2004 (data of Ivshina A. R.)

Distribution of herring in the Tatar Strait in April-May 2005 (left panel), 2006 (central panel) and 2008 (right panel) by the results of trawl surveys.
### Data of capelin frequency and catches during the bottom trawl survey in the Tatar Strait in different years

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>1V-V</td>
<td>1V-V</td>
<td>V</td>
<td>1V-V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>1V-V</td>
<td>V-V1</td>
<td>V-V1</td>
<td></td>
</tr>
<tr>
<td>Type of vessel</td>
<td>SRTM-500</td>
<td>SRTM-500</td>
<td>SRTM-500</td>
<td>SRTM-500</td>
<td>SRTM-500</td>
<td>SRTM-500</td>
<td>RS-300</td>
<td>SRTM-500</td>
<td>STR-420</td>
<td>STR-420</td>
<td></td>
</tr>
<tr>
<td>Number of trawling stations</td>
<td>87</td>
<td>50</td>
<td>66</td>
<td>73</td>
<td>34</td>
<td>65</td>
<td>76</td>
<td>27</td>
<td>75</td>
<td>120</td>
<td>147</td>
</tr>
<tr>
<td>FREQUENCY, %</td>
<td>48.0</td>
<td>38.0</td>
<td>36.4</td>
<td>38.4</td>
<td>58.8</td>
<td>26.2</td>
<td>15.8</td>
<td>63.0</td>
<td>17.3</td>
<td>7.6</td>
<td>29.2</td>
</tr>
<tr>
<td>Mean Catch per Unit Effort (amount of fish)</td>
<td>402</td>
<td>240</td>
<td>256</td>
<td>192</td>
<td>544</td>
<td>111</td>
<td>2735</td>
<td>5000</td>
<td>14</td>
<td>6</td>
<td>2598</td>
</tr>
<tr>
<td>Mean Catch per Unit Effort (kg)</td>
<td>12.7</td>
<td>7.0</td>
<td>5.6</td>
<td>6.5</td>
<td>15.8</td>
<td>2.8</td>
<td>87.5</td>
<td>125.0</td>
<td>0.44</td>
<td>0.15</td>
<td>78.2</td>
</tr>
</tbody>
</table>

### Data of capelin spawning intensity near the western coast of Sakhalin Island in different years

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spawning area (mln. sq. m)</td>
<td>2.34</td>
<td>1.90</td>
<td>1.61</td>
<td>0.94</td>
<td>0.50</td>
<td>0.08</td>
<td>0.15</td>
<td>0.76</td>
<td>2.88</td>
</tr>
<tr>
<td>Concentration of eggs (x1000000)</td>
<td>3.60</td>
<td>0.88</td>
<td>1.56</td>
<td>0.64</td>
<td>0.18</td>
<td>0.15</td>
<td>0.052</td>
<td>0.028</td>
<td>3.80</td>
</tr>
</tbody>
</table>
Long-term catch dynamics of Pacific cod and yellowfin sole in the Tatar Strait and sand-lance in the La Perouse Strait

- **Pacific cod**

- **Yellowfin sole**

- **Sand-lance**

Long-term stock biomass dynamics of yellowfin sole in the northern Tatar Strait
Ranking of fish biomasses by families along western Sakhalin from the data of winter, 1987-2003 (left panel) and summer, 1988-1998 (right panel) bottom trawl surveys.
Smoothed long-term dynamics of fish biomasses from the dominant families and trends of stock changes for Gadidae and Pleuronectidae from the data of winter (left) and summer (right) bottom trawl surveys performed by SakhNIRO in 1987-2003.
Correlation coefficients between annual catches of different commercial fish species from the Tatar Strait and adjacent waters in 1950-1998

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Pink salmon</th>
<th>Herring (Sakhalin-Hokkaido)</th>
<th>Herring (De–Kustry)</th>
<th>Walleye pollock</th>
<th>Pacific cod</th>
<th>Arabesque greenling</th>
<th>Sand-lance</th>
<th>Yell. Fin sole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pink salmon</td>
<td>1</td>
<td>-0.178</td>
<td>0.115</td>
<td>0.232</td>
<td>-0.133</td>
<td>0.133</td>
<td>0.503</td>
<td>-0.039</td>
</tr>
<tr>
<td>Herring (Sakhalin-Hokkaido Stock)</td>
<td>-0.178</td>
<td>1</td>
<td>0.189</td>
<td>-0.268</td>
<td>0.745</td>
<td>-0.056</td>
<td>-0.213</td>
<td>0.185</td>
</tr>
<tr>
<td>Herring (De–Kustry Stock)</td>
<td>0.115</td>
<td>0.189</td>
<td>1</td>
<td>0.163</td>
<td>0.258</td>
<td>0.255</td>
<td>0.061</td>
<td>0.225</td>
</tr>
<tr>
<td>Walleye pollock</td>
<td>0.232</td>
<td>-0.268</td>
<td>0.163</td>
<td>1</td>
<td>-0.364</td>
<td>-0.063</td>
<td>-0.113</td>
<td>0.056</td>
</tr>
<tr>
<td>Pacific cod</td>
<td>-0.133</td>
<td>0.745</td>
<td>0.258</td>
<td>-0.364</td>
<td>1</td>
<td>-0.061</td>
<td>-0.215</td>
<td>0.461</td>
</tr>
<tr>
<td>Arabesque greenling</td>
<td>0.133</td>
<td>-0.056</td>
<td>0.256</td>
<td>-0.063</td>
<td>-0.061</td>
<td>1</td>
<td>0.198</td>
<td>-0.146</td>
</tr>
<tr>
<td>Sand-lance</td>
<td>0.503</td>
<td>-0.213</td>
<td>0.061</td>
<td>-0.113</td>
<td>-0.215</td>
<td>0.198</td>
<td>1</td>
<td>-0.096</td>
</tr>
<tr>
<td>Yellow-fin sole</td>
<td>-0.039</td>
<td>0.184</td>
<td>0.225</td>
<td>0.056</td>
<td>0.461</td>
<td>-0.146</td>
<td>-0.096</td>
<td>1</td>
</tr>
</tbody>
</table>
### Correlation coefficients between annual fish catches and PDO Winter Index, annual catches and Siberian High Index in 1950-2001 (with a 4-year shift forth)

<table>
<thead>
<tr>
<th>Fish species</th>
<th>SHI</th>
<th>PDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pink salmon</td>
<td>-0.290</td>
<td>-0.096</td>
</tr>
<tr>
<td>Herring (Sakhalin – Hokkaido)</td>
<td>-0.142</td>
<td>-0.353</td>
</tr>
<tr>
<td>Herring (De - Kustry Stock))</td>
<td>-0.351</td>
<td>-0.125</td>
</tr>
<tr>
<td>Walleye pollock</td>
<td>-0.309</td>
<td>-0.181</td>
</tr>
<tr>
<td>Pacific cod</td>
<td>-0.078</td>
<td>-0.259</td>
</tr>
<tr>
<td>Arabesque greenling</td>
<td>0.227</td>
<td>0.049</td>
</tr>
<tr>
<td>Sand-lance</td>
<td>-0.090</td>
<td>-0.168</td>
</tr>
<tr>
<td>Yellow fin sole</td>
<td>-0.024</td>
<td>-0.295</td>
</tr>
<tr>
<td>Saffron cod</td>
<td>-0.536</td>
<td>-0.212</td>
</tr>
</tbody>
</table>

### Correlation coefficients between annual fish catches and water temperature near western Hokkaido and southwestern Sakhalin in 1964-1993 (with a 4-year shift forth)

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Hokkaido (winter)</th>
<th>Hokkaido (summer)</th>
<th>Sakhalin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pink salmon</td>
<td>0.293</td>
<td>0.211</td>
<td>0.015</td>
</tr>
<tr>
<td>Herring (Sakhalin- Hokkaido)</td>
<td>0.073</td>
<td>0.211</td>
<td>0.114</td>
</tr>
<tr>
<td>Herring (De - Kustry stock)</td>
<td>0.249</td>
<td>0.104</td>
<td>-0.302</td>
</tr>
<tr>
<td>Walleye pollock</td>
<td>0.196</td>
<td>0.048</td>
<td>0.315</td>
</tr>
<tr>
<td>Pacific cod</td>
<td>-0.281</td>
<td>-0.321</td>
<td>-0.138</td>
</tr>
<tr>
<td>Arabesque greenling</td>
<td>0.311</td>
<td>0.365</td>
<td>-0.291</td>
</tr>
<tr>
<td>Sand-lance</td>
<td>0.580</td>
<td>0.367</td>
<td>-0.032</td>
</tr>
<tr>
<td>Yellow fin sole</td>
<td>0.089</td>
<td>-0.004</td>
<td>0.160</td>
</tr>
<tr>
<td>Saffron cod</td>
<td>-0.814</td>
<td>0.201</td>
<td>0.409</td>
</tr>
</tbody>
</table>
Annual changes in catch anomalies for herring, walleye pollock, pink salmon, saffron cod, yellowfin sole near western Sakhalin, sand-lance and arabesque greenling near northern Hokkaido, and Pacific saury in Japan/East Sea in 1950-2005

Fish species with winter-spring spawning

Fish species with summer-autumn spawning
Conclusions

• In the second half of the 20th century, significant changes in stock abundance have been observed for many fish species in the Tatar Strait.

• North-boreal, subtropical, bottom and pelagic fish species experienced abundance fluctuations. Changes in abundance, revealed for different fish species, had different-directed trends and were independent from any belonging to biogeographic or ecological group of fishes.

• Changes in fish abundance in the Tatar Strait occurred against the background of increase in Siberian High Index and PDO Index, decrease in MOI Index, increase in water temperature in the eastern part of the Sea of Japan in the 1980s and especially in the 1990s, and limitation of the warming water trend in the early 2000s.

• No close correlation was observed between the annual catches of different fish species and climatic indices, and between the catches and water temperature, except for saffron cod catches.

• There was revealed a general trend: a comparatively high abundance of fishes that spawn in winter-spring (herring, capelin, sardine, walleye pollock, Pacific cod, saffron cod and others) was observed in the periods when intensity of the warm Tsushima Current lowered. In the years of high intensity of Tsushima Current, the abundance of summer-autumn spawning fishes (anchovy, saury, arabesque greenling, and yellowfin sole) increased.

• Major south-latitude fish species of the Tatar Strait are more frequent in the years of higher intensity of the Tsushima Current and lower monsoon intensity as well.
• Thank you for attention