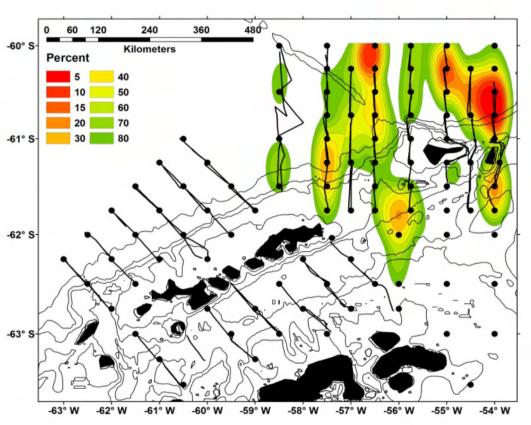
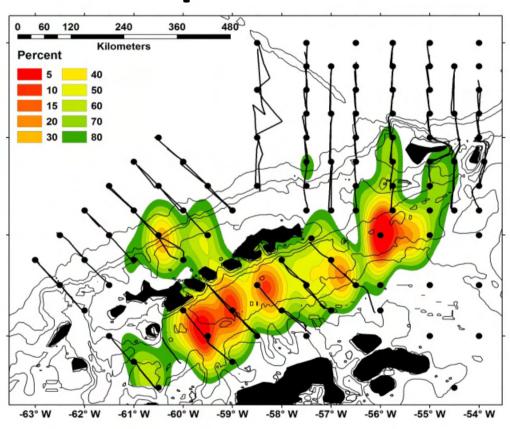
Investigating Patch Dynamics Between Foraging Whales and Krill

Jarrod A. Santora*¹, William J. Sydeman, Christian S. Reiss²

¹ Farallon Institute for Advanced Ecosystem Research, Petaluma, CA, USA


² Antarctic Ecosystem Research Division, NOAA Fisheries, Southwest Fisheries Science

Center, 8604 La Jolla Shores Dr. La Jolla, CA, USA



Antarctic Peninsula: Whale Hotspots (2003-2008)

Fin Whale

Humpback Whale

Background

Issues:

- Forecasting baleen whale populations
- Consumption estimates of prey are poorly known
- Interactions with fisheries
- Climate Change
- Where? Southern Ocean
- What? Spatial Ecology and Patch Dynamics
 - Krill size
 - Whale foraging grounds
 - Spatial predictive modeling

Spatial Ecology and Patch Dynamics

- Long-term monitoring to investigate krill and whale distributions
 - Does sighting rate vary over time?
- Hotspot Analysis
 - Are there predictable locations where whales/krill occur annually? Persistent habitat use?
- Spatial Regression Models
 - Does the spatial distribution of whales vary in relation to krill demographic patterns?

WHALES

Humpback Whale

(Megaptera novaeangliae)

Adult females measure 45-50 feet (13.7-15.2 m) males = 40-48 feet (12.2-14.6 m) in length.

Fin Whale

(Balaenoptera physalus)

Adult males measure up to 88 feet (26.8 m) in the southern hemisphere. Females are slightly larger than males.

Antarctic Minke Whale

(Balaenoptera bonaerensis)

Adult males average about 8 m (26 feet) Adult females average 8.2 m (27 feet)

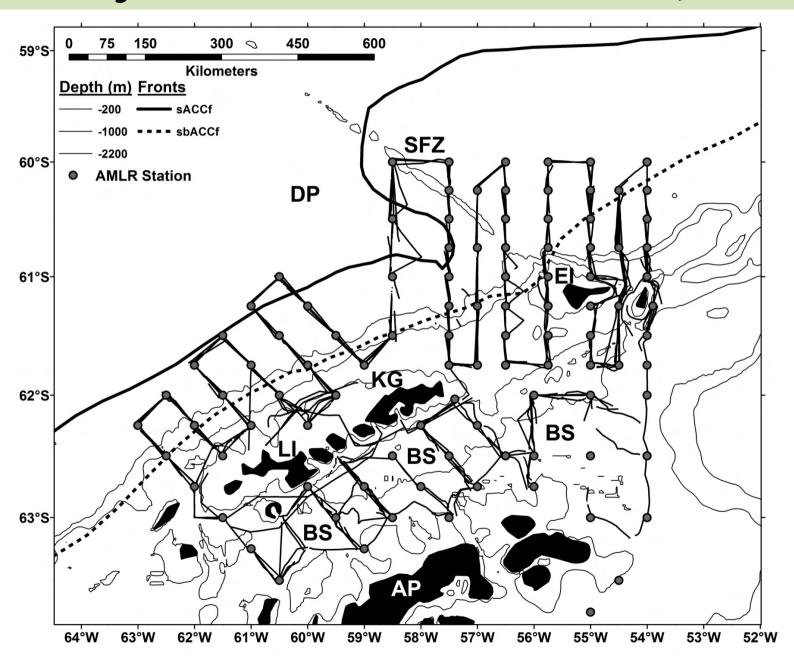
KRILL DEMOGRAPHY: The South Shetland Islands contain distinct length/maturity classes comprising a reproducing population.

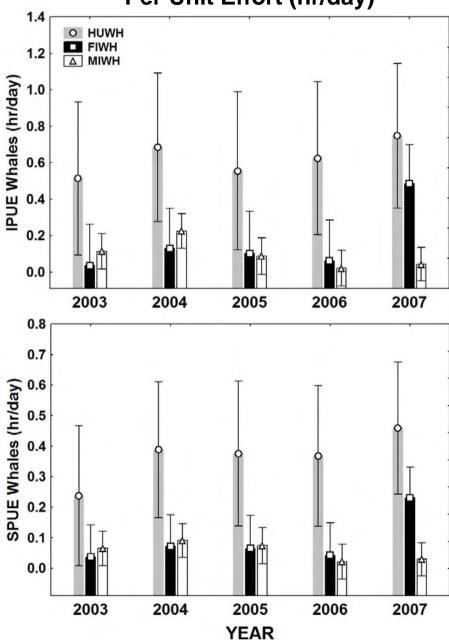
Krill length/maturity stages:

- •13-34mm Small Juveniles
- •35-45mm Immature
- •45-65mm Mature

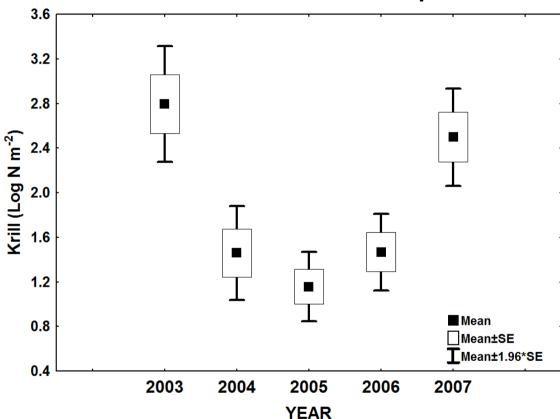
Antarctic Krill (*Euphausia superba*) *Image: Mike Goebel*

METHODS: Krill and Whale Distribution





Survey Effort: 2003-2007 ~25,000km



Whale Individuals/Sightings Per Unit Effort (hr/day)

SURVEY RESULTS

Krill Abundance – Net Samples

Spatial Association of Whales and Krill Length Classes

 OBJECTIVE: Use Spatial Regression Models to determine if whales exhibit species specific foraging patterns that depend on krill length classes.

Spatial Lag:
$$Y = \rho Wy + X\beta + \varepsilon$$

Spatial Error: $Y = X\beta + \varepsilon$, where $\varepsilon = \lambda W \varepsilon + \xi$

 $\mathbf{Y} =$ Frequency of whales sighted in Cell (i, j)

X = Krill Abundance

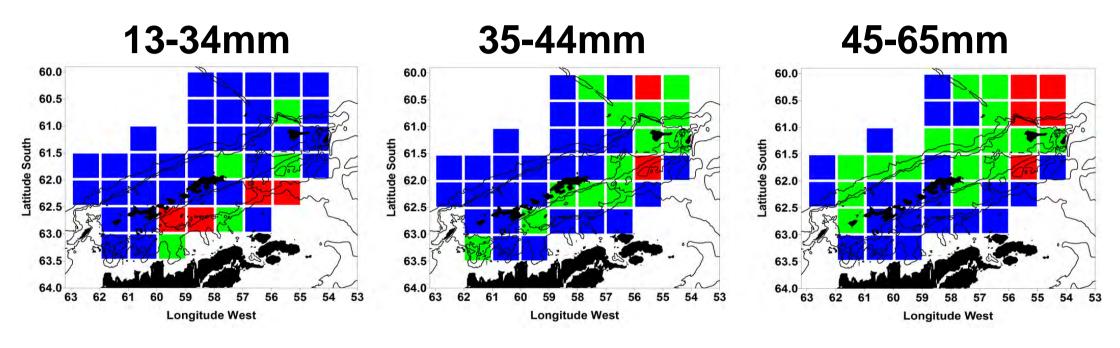
Wy = Spatially varying lag term drawn from the spatial weight variable

We = Spatially varying error term

 λ =Autoregressive coefficient

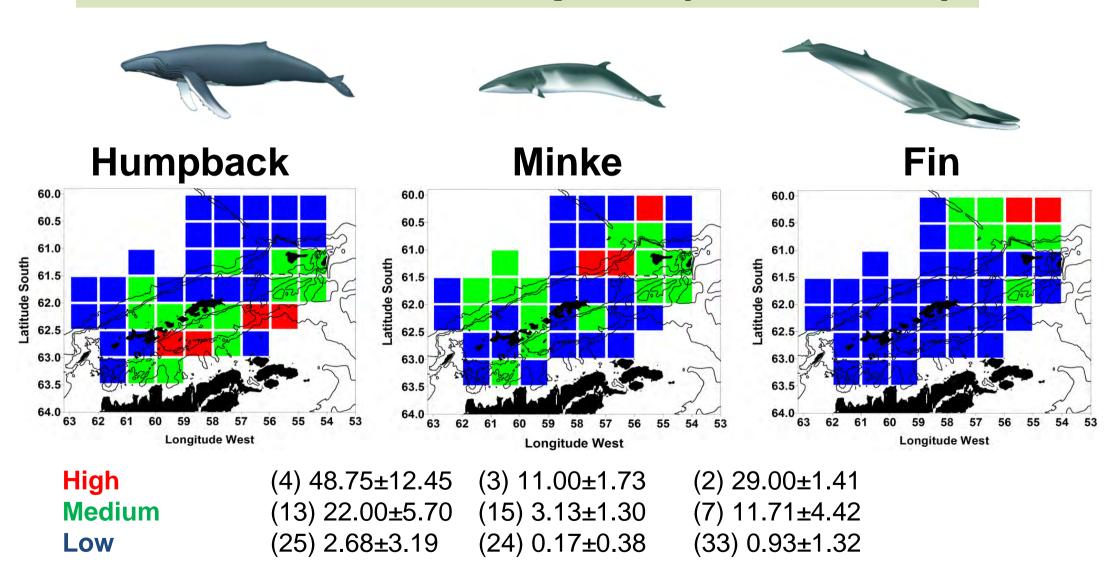
ρ = Spatial autoregressive coefficient

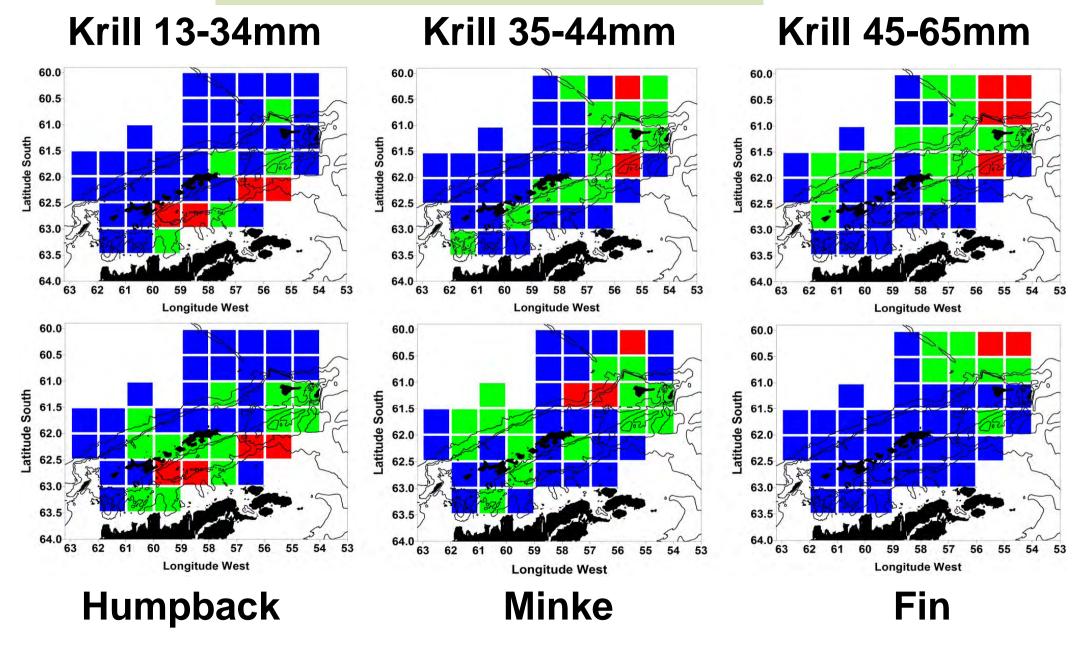
 β = Regression coefficient


 ε = Random error term

ξ = Vector of identically, and independent error term

Krill Length Hotspots (2003-2007)




42 cells (0.5° S x 1.0° W), ~ 2860 km²

High
Medium
Low

Baleen Whale Hotspots (2003-2007)

Hotspots (2003-2007)

Foraging Grounds of Humpback Whales Overlap with Small Krill

 Results of Spatial Lag Model for Association of Humpback Whales and Krill Length Classes

• $r^2 = 0.362$, AIC = 346.078

•	<u>Variable</u>	Coeff	S.E.	Z	<u>P</u>
•	Wy	0.213	0.124	1.710	0.087
•	Constant	8.163	3.343	2.442	0.015
•	13-34mm	0.427	0.108	3.927	0.0008
•	35-44mm	0.258	0.356	0.725	0.468
•	45-65mm	-0.339	0.445	-0.763	0.446

Foraging Grounds of Fin Whales Overlap with Medium-Large Krill

 Results of Spatial Lag Model for Association of Fin Whales and Krill Size Classes

•
$$r^2 = 0.69$$
, AIC = 245.078

•	<u>Variable</u>	Coeff	S.E.	Z	<u>P</u>
•	Wy	0.24	0.09	2.44	0.014
•	Constant	-1.78	0.91	-1.95	0.051
•	13-34mm	-0.04	0.04	1.07	0.284
•	35-44mm	0.26	0.10	2.44	0.015
•	45-65mm	0.73	0.15	4.98	< 0.0001

Foraging Grounds of Minke Whales Overlap with Medium Krill

 Results of Spatial Lag Model for Association of Minke Whales and Krill Size Classes

•
$$r^2 = 0.22$$
, AIC = 101.758

•	Variable	Coeff	S.E.	Z	<u>P</u>
•	Wy	0.19	0.13	1.54	0.124
•	Constant	0.34	0.25	1.33	0.184
•	13-34mm	-0.18	0.09	1.83	0.067
•	35-44mm	0.32	0.16	2.03	0.042
•	45-65mm	0.04	0.16	0.25	0.798

Krill size is important for understanding whale distribution

- Habitat Selection?
 - Spatial segregation of whales is likely related to krill demography
 - Humpbacks are spatially associated with small krill
 - Fin are spatially associated with large krill
 - Minke Whales?
 - Is their an interaction between krill size and patch structure?

Relevance

- Why do we want to measure spatial association of whales and krill?
 - Marine Spatial Planning Tracking future changes...
 - Parameterization of consumption models for whales
 - Assessing:
 - Top-down control on food webs
 - Interactions between krill fishery and whales
 - Threshold/Precautionary catch limit
 - Change in fishing locations
 - Climate change? Favorable or negative?

Thank You!

