Ecologically and biologically sensitive areas in the high seas North Pacific

Edward Gregr, Andrea Rambeau, and R. Ian Perry

October 29, 2010
PICES, Portland OR
Motivation: Convention on Biological Diversity (CBD)
FAO Code of Conduct for Resp. Fishery Practices
Canada’s Oceans Act (1996)

- **EBSMAs.** Protect sensitive regions beyond national jurisdictions
- **VMEs.** Protect important areas from bottom fishing
- **EBSAs.** Guide selection of areas for enhanced protection

Can existing marine classifications inform the delineation of such regions?
High-seas classifications

• Physical
 – Interpreted; clustering (bottom or surface)

• Zoological
 – Focal species; habitat envelopes

• Synthetic
 – Biomes, provinces, and similar
Historic high-seas classifications

Dodimead 1963

Favorite 1976

Longhurst 1998

Sherman 1986
Clustering - surface

Devred, Sathyendranath, & Platt 2007

Gregr & Bodtker 2007
Clustering - Benthic

- Depth
- Slope
- Primary production
- Sediment thickness
- Temperature
- DO
- Geomorphology and sediment type

= 11 ‘seascapes’
Zoogeographical approaches

Species richness
115 cetacean and pinniped species

Optimization
35 pelagic species, plus static and dynamic features
Classification assessment

- 18 classifications
- 7 criteria

- Feasible with existing data
- Appropriate resolution
- Dynamic seasonality considered
- Reproducible
- Ecological physics & biology
- Parsimonious
- Applicable across realms
18 classifications considered

<table>
<thead>
<tr>
<th>Classification</th>
<th>Analysis</th>
<th>Extents</th>
<th>Approach</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major currents</td>
<td>Quantitative</td>
<td>Global</td>
<td>Geophysical</td>
<td>Dodimead et al. 1963; Favorite et al. 1976</td>
</tr>
<tr>
<td>Biomes/provinces</td>
<td>Quantitative</td>
<td>Global</td>
<td>Biophysical</td>
<td>Longhurst 1998</td>
</tr>
<tr>
<td>Surface clustering</td>
<td>Quantitative</td>
<td>Regional (NEP)</td>
<td>Ecological</td>
<td>Gregr & Bodtker 2007</td>
</tr>
<tr>
<td>LMEs</td>
<td>Expert</td>
<td>Global</td>
<td>Ecological/political</td>
<td>Sherman 1986</td>
</tr>
<tr>
<td>Physical synthetic</td>
<td>Expert</td>
<td>Global</td>
<td>Geophysical</td>
<td>CBD 2008</td>
</tr>
<tr>
<td>Vulnerable areas</td>
<td>Expert</td>
<td>Global</td>
<td>Ecological</td>
<td>FAO 2007</td>
</tr>
<tr>
<td>Clustered provinces</td>
<td>Quantitative</td>
<td>Regional</td>
<td>Biophysical</td>
<td>Devred et al. 2007</td>
</tr>
<tr>
<td>Envelope models</td>
<td>Expert</td>
<td>Global</td>
<td>Biological</td>
<td>Kaschner 2007</td>
</tr>
<tr>
<td>MEOW</td>
<td>n/a</td>
<td>Global</td>
<td>Synthesis</td>
<td>Spalding et al. 2007</td>
</tr>
<tr>
<td>LSA</td>
<td>Expert</td>
<td>Local</td>
<td>Biological</td>
<td>Sanderson et al. 2002</td>
</tr>
<tr>
<td>EBSAs</td>
<td>Expert</td>
<td>Regional</td>
<td>Biological</td>
<td>Clarke & Jamieson 2006a,b</td>
</tr>
<tr>
<td>LOMAs</td>
<td>Expert</td>
<td>Regional (EEZ)</td>
<td>Ecological</td>
<td>Harper et al. 2003</td>
</tr>
<tr>
<td>Ecoregions</td>
<td>Quantitative</td>
<td>Regional</td>
<td>Geophysical</td>
<td>Zacharias et al. 1998</td>
</tr>
<tr>
<td>Roff et al. 2003</td>
<td>Quantitative</td>
<td>Regional (EEZ)</td>
<td>Geophysical</td>
<td>Roff et al. 2003</td>
</tr>
<tr>
<td>Disturbance/Adversity</td>
<td>Quantitative</td>
<td>Regional</td>
<td>Ecological</td>
<td>Kostylev et al. 2005</td>
</tr>
<tr>
<td>Disturbance/Adversity</td>
<td>Quantitative</td>
<td>Regional</td>
<td>Ecological</td>
<td>Gregr & Jamieson 2008</td>
</tr>
<tr>
<td>UK SeaMap</td>
<td>Quantitative</td>
<td>Regional (EEZ)</td>
<td>Geophysical</td>
<td>Connor et al. 2006</td>
</tr>
<tr>
<td>Benthic acoustic</td>
<td>Quantitative</td>
<td>Regional</td>
<td>Geophysical</td>
<td>Greene et al. 2007</td>
</tr>
</tbody>
</table>
UK Seamp program

- Piloted in 2002; UK SeaMap 2006; UK SeaMap 2010
- Labour intensive

Benthic classification
- Depth; bottom type; light attenuation; wave base; tidal current; temperature

Pelagic classification
- Salinity; temperature difference; frontal probability

Validated with 32,000 benthic samples and 6 plankton taxa

Can they be EBSAs?

| Rarity | Aggregation | Fitness |
EBSAs - a zoological approach

132 species or groups assessed

How to integrate?

Clarke and Jamieson 2006a
Canadian west coast EBSAs

- Concentration features
- Bottlenecks
- Sponge reefs

Clarke and Jamieson 2006b
<table>
<thead>
<tr>
<th>Rarity</th>
<th>estuaries; reefs; bottom types; canyons; seamounts; vents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregation</td>
<td>bottlenecks; tidal rips; sills; ridges; meso-scale eddies; upwelling zones; shelf edge concentration areas; major convergence and divergence zones</td>
</tr>
<tr>
<td>Fitness</td>
<td></td>
</tr>
<tr>
<td>consequences</td>
<td>reefs; bottom types; canyons; migration routes; breeding grounds</td>
</tr>
</tbody>
</table>
EBSA guidelines

• Start with rare (static) physical features
• Add dynamic pelagic areas
• Identify representative taxa
• Assess contribution of defined physical features to taxa of interest
• Expand EBSAs to include ‘sufficient’ critical habitat as necessary
Advantages

- Fast
- Transparent
- Clarifies role of various disciplines
- Focuses on thresholds and adequacy
- Lends itself to adaptive management
Key challenge

Relating biology to physics
• Assign multiple biological attributes to EBSAs
 – Who?
 – Where?
 – When? (2 dim)
 – Why?
What about biodiversity?

• A multi-scale concept
• Difficult to reduce to a single index
• Treat as an attribute of defined EBSA system

• Support prioritisation for protection (along with naturalness and representativity)
Thank you!

Glen Jamieson, Cathryn Clarke-Murray, and the DFO working groups for doing the hard work.

Funded by Fisheries & Oceans Canada

Questions, comments? ed@scitechconsulting.com