The TASC (Total Allowable Scallop Culture)

an approach for the issue on the overproduction in Yezo giant scallop cultivation in Mutsu Bay

Fisheries Research Agency, Japan Masahito HIROTA

PICES Session7 oct.26 (Portland)

FISHRIES RESEARCH AJENCY JAPAN

What is TASC?

Meaning

Initial of [Total Allowable Scallop Culture]

(Original word of "Mutsu Bay" in Aomori prefecture)

Contents

Background about TASC

Eestimate of cultivation quantities [from Feed / Income]

Coordination for agreement in stakeholders

1,291 fishers and processors

Yezo giant scallop aquaculture in JAPAN [type of aquaculture / distribution map]

Yezo giant scallop aquaculture in Mutsu Bay [Map / Temperature / Aquaculture ratio / Species ratio]

Yezo giant scallop aquaculture in Mutsu Bay [Over cultivation, Low income and Low quality]

Overworking on the sea [Over cultivation caused the over work] in Mutsu Bay

Yezo giant scallop aquaculture in Mutsu Bay [Over cultivation also led mother scallop shortage]

Fig. Changes in annual processing production of each scallop size and age :Aomori Fisheries Cooperative Association survey

Processing	Hanging term(years)		Shell length	Sexual mature	
Boiled	1~1.5		7 ~ 9cm	× Low	
Frozen	2~2.5	·	11 ~ 13cm	High	
Fresh	2~2.5		11 ~ 13cm	High	

Managerial efficiency : High

Re-productivity: Low

Summary of issue to be solved [:in Mutsu Bay scallop cultivation Industry]

- 1. Quality loss and unstable of management
- 2. Overworking on the sea
- 3. Re-production loss from mother scallop lack

Quality loss

Overwork on sea

Mother scallop lack

TASC is composed of two analysis

[:Feed environment / management simulation]

Analysis of proper production from feed Primary production quantity

Analysis of proper production

Feed environment

- 1) primary production
- 2) inflow of organic substances

Research and analysis of Feed account balance

Scallop culturing capacity in Mutsu Bay

					mi.	llion pieces
		aquaculture		sowing		total
		juvenile	adult	juvenile	adult	total
status	2 years shell	748	342			
	1 year shell	483		140	163	
	total	1,57	73	30		1,876
simulati	ioı2 years shell	496	236			
	1 year shell	328		140	163	
	total	1,06	30	303	3	1,363

Yoshida, Kosaka (2002) Aomori Fisheries research center Aquaculture Institute

Analysis of proper production from feed Inflow organic substances

Analysis of proper production

Feed environment

- 1) primary production
- 2) inflow of organic substances

Total Allowable Scallop Culture capacity 83,711(ton)+5,860(ton)=89,571(ton)
Primary Inflow

Fig Rate of inflow organic and primary production

TASC system report 2009:Aomori Prefecture Fisheries Institute)

Calculation of proper production from management Production function

Income and cost simulation

- 1) Production function
- 2) Cost analysis

Analysis of correlation production quantities and each Price

Result of Multiple regression

		Juvenile	Adult	Sowing	Dependent variable
	Aomori production	-0.00269	-0.00080	-	
Partial	Hokkaido sowing	-	-0.00054	-0.00124	
regression coefficient	Hokkaido hanging	-	-0.00077	-	× Production quota
	Adult production	-	-	-0.00351	(variable)
	constant	388.559	474.868	557.938	
Fitting	Adjust R ²	0.91987	0.8854	0.7816	•
	SE	5.8023	8.3085	13.6774	simulation

TASC system report 2009:Aomori Prefecture Fisheries Institute)

Calculation of proper production from management Cost Analysis

Earning and expensive simulation

- 1) Production function
- 2) Cost analysis

Analysis of cost curve

TASC system report 2009:Aomori Prefecture Fisheries Institute)

Process to agreement for stakeholders

Term of agreements

Total quantities (ton)	90,000
Adult scallop (ton)	20,000
Shift period	2 years
distribution rate	X

11/12/2010

1 TASC has bio and economic grounds [Feed environment,/income and expense balance]

2 Implementation on Exercise Regulation for Fishery Right

