A statistical approach to identify optimal habitat suitability of neon flying squid in northwestern North Pacific by using satellite datasets and 3-D ocean data assimilation product

Hiromichi Igarashi¹, Toshiyuki Awaji¹,², Masafumi Kamachi¹,³, Yoichi Ishikawa¹,², Norihisa Usui³, Yosuke Fujii³, Takahiro Toyoda³, Shuhei Masuda¹, Toshimasa Doi¹, Shiro Nishikawa¹, Yoshihisa Hiyoshi¹, Mitsuo Sakai⁴, Yoshiki Kato⁴, Sei-ichi Saitoh⁵ and Shin-ichi Sato⁶

¹Japan Agency for Marine-Earth Science and Technology, ²Kyoto University, ³Meteorological Research Institute, Japan Meteorological Agency, ⁴National Research Institute of Far Seas Fisheries, Fisheries Research Agency, ⁵Hokkaido University, ⁶Aomori Prefectural Industrial Technology Research Center
outline

- Introduction
- Data and method
- Result: satellite-based HSI model
- Result: 3D-ODAP-based HSI model
- Concluding remarks
Introduction

- Neon flying squid has a wide-spread distribution in the North Pacific and plays an important role in the pelagic ecosystem.
- It is an international fishery resource with high commercial value and one of the main targets for the fishery in Aomori Prefecture.
- A good understanding of the habitat of the neon flying squid provides us useful information for identifying potential fishing ground.
- We have been currently striving to develop a habitat suitability model for adaptive fishing operations with low cost and low CO$_2$ emission in the on-going Japanese national research program “RECCA”.

RECCA
Research Program on Climate Change Adaptation
Habitat Suitability Index (HSI) model

- is widely used as a tool for ecological impact assessment.
- describes the relations between fish abundance and environmental variables, estimates the level of habitat suitability as an HSI score ranging from 0 to 1.

\[HSI = f(Si_1, Si_2, Si_3, \ldots) \]

Environmental variables

- SST
- SSH
- ...

Compare EVs and CPUE

Suitability Indices

SI = 0
SI = 1.0

Habitat Suitability Index

SI
CPUE

environmental variables (SST, SSH, etc.)
neon flying squid
(Ommastrephes bartramii)

- widely distributed in the north Pacific
- 1-year lifespan and seasonal migration
- important for pelagic ecosystem and Japanese fisheries

Autumn cohort
- fishing around the date line in summer

winter-spring cohort
- fishing offshore of Sanriku in the next winter
neon flying squid
(Ommastrephes bartramii)
- widely distributed in the north Pacific
- 1-year lifespan and seasonal migration
- important for pelagic ecosystem and Japanese fisheries

Autumn cohort
fishing around the date line in summer
winter-spring cohort
fishing offshore of Sanriku in the next winter
High HSI have little correspondence with high catch.

Monthly mean SST, T(35m), T(317m), SSS, SSH were used.

It is well-known that the meso-scale eddy activities strongly affect the ocean biogeochemical and fishery environments in this area, but this model doesn’t have a potential to express them because of using just monthly mean values.

In order to improve the HSI model to the level of practical use for adaptive fishing operations, we investigated the suitable habitat area for the winter-spring cohort east of northern Japan using satellite-based datasets and 3D-VAR ODA product, which can provide realistic fields of 3-dimensional ocean circulation and environmental structures including meso-scale eddies.
data

- **Fishery data**

 Commercial fisheries data of neon flying squid from January to February during 2001-2007

 (by Aomori Prefectural Industrial Technology Research Center)

 the dates of fishing, fishing locations, CPUE (No./hour/machine)

- **Satellite data**

 daily sea surface temperature (SST) by Tohoku Univ. (0.1 deg.)

 AVISO NRT Merged Absolute Dynamic Topography (MADT)

 (1/3 deg., weekly → daily interpolated)

- **3D-VAR data assimilation product**

 MOVE (MRI Multivariate Ocean Variational Estimation)

 Temperature, Salinity, Current velocity (U,V,W), SSH

 (0.1 deg, vertical 54 levels, 5-days → daily interpolated)
Making SI curves
Spline smooth regression method was applied to the ln(CPUE)-each EV scatter plot, and SI was defined as,

\[SI = \frac{Y_{fit} - \min Y_{fit}}{\max Y_{fit} - \min Y_{fit}} \]

where \(Y_{fit} \) is the predicted ln(CPUE).

HSI Modeling
Geometric mean model (equal weight)

\[HSI = \sqrt[n]{\prod_{i=1}^{n} SI_i} \]

Validation
The following three correlation coefficients between the estimated HSI and the observed ln(CPUE) are calculated.

Pearson corr. coef./Kendall tau rank corr. coef./Spearman rank corr. coef.
procedure

- satellite-based model (3 variables)
- MOVE-2D model (the same as above)
- Picking up the effective 3D environmental variables (T,S,U,V,W,V_{scal})
- MOVE-3D model (selected 7 variables)
- Validation
Results
two peaks correspond to cyclonic and anticyclonic eddies

optimal SST range is 8-20 °C.

an optimal SSH (geostrophic current speed)
The mixture of Oyashio and Kuroshio and the local upwelling leads to high-productivity and high squid abundance.
MOVE SI model (2D)

MOVE SI model (3D)

new input: mixed layer depth

\[HSI = \sqrt{n \prod_{i=1}^{n} SI_i} \]
(n=3 → n=4)

Nutrient supply from the deeper layer affects the feeding condition of neon flying squid.

Base-model: SST, SSH, □ SSH, MLD

(Satellite) PR: 0.305
K □ : 0.209
S □ : 0.309

(Significant at 1%)
PR: 0.166
K □ : 0.102
S □ : 0.152

PR: 0.227
K □ : 0.132
S □ : 0.197
MOVE SI model (T,S selection)

- **PR:** 0.227, K: 0.132, S: 0.197

- *T profile is similar to S profile.*
- *High corr. coef. can be seen in 300-500m-d in S.*
- *Higher salinity(330m) is preferable for squid.*

S(330m) is selected as a new EV for MOVE-3D model.
MOVE SI model (Vscal, U selection)

*Vscal profile is similar to U profile.
*High corr.coef. can be seen in 400-550m-d in Vscal.
*Higher Vscal(480m) is preferable for squid.

Vscal(480m) is selected for 3D-MOVE model.

\[V_{scal} \equiv \sqrt{U^2 + V^2} \]
MOVE model (V,W selection)

*High corr.coef. can be seen in V (all depth).
*Higher northward V(138m) is preferable for squid. V(138m) is selected for 3D-MOVE model.

The north-south water mass transport is very important for regional primary productivity and subsequent feeding condition for neon flying squid.
HSI model (MOVE-3D) daily HSI map 1Jan.-28Feb.2006

Southward transition of the actual fishing ground corresponding to the movement of the anti-cyclonic eddy is well-reproduced.
Comparing three models
(composite HSI map on 1-10Feb.2006)

Satellite-based model
(SST,SSH, \(\tilde{\text{SSH}}\))

MOVE-2D model
(SST,SSH, \(\tilde{\text{SSH}}\))

MOVE-3D model
(SST,SSH, \(\tilde{\text{SSH}}\), MLD,S330,Vscal480, V138)

white dots: fishing points by commercial vessels

PR:0.305
K\(\tilde{}\):0.209
S\(\tilde{}\):0.309

PR:0.166
K\(\tilde{}\):0.102
S\(\tilde{}\):0.152

PR:0.321
K\(\tilde{}\):0.203
S\(\tilde{}\):0.295
The suitable habitat area for the winter-spring cohort east of northern Japan was investigated using satellite-based observational datasets and MOVE 3DVAR ODA product.

HSI model by using MOVE data can expect to provide us realistic potential habitat fields of neon flying squid for practical use.

The high HSI area is likely to locate the northern edge of anti-cyclonic eddies generated in the Kuroshio-Oyashio transition zone, which suggests the mixture of warm, nutrient-poor water in Kuroshio region and cold, nutrient-rich water in Oyashio region, and the local upwelling by meso-scale eddy activities leads to high-productivity and subsequent suitable habitat for neon flying squid.

Mixed layer depth and V(N-S comp. of current speed) in the mixed layer are effective to improve the HSI model, which suggests the local nutrient supply from deeper layers and northward advection of water mass are important for feeding condition.