The change in the environment and fish community structure in an enclosed bay western Japan over the last five decades

Sangdeok Chung and Hideaki Nakata
Graduate School of Science and Technology, Nagasaki University
Geographical and physical features of the study area (1)

- An enclosed bay connected to East China Sea (ECS) through very narrow straits
- Due to the enclosed feature, water exchange is extremely small
- Suffering from the problem of eutrophication such as hypoxia formation
Geographical and physical features of the study area (1)

- **Average depth**: 15 m with a flat basin
- **The area < 5 m**: 8.6%
- **Occurrence of hypoxia in summer**: the regional-scale cyclonic circulation (Takahashi et al, 2009)
Main purposes of this study

• to investigate the long-term changes in fish community structure in Omura bay

• to attest the possible causes of those changes

Based on the results of the above-mentioned analysis,

• to deepen our understanding of anthropogenic effect on a coastal marine ecosystem
Data set

- **Environmental data**
 - Temperature (National Pearl Research Laboratory)
 - Dissolved oxygen (Nagasaki Prefectural Institute of Fisheries)
 - Reclamation (Geospatial Information Authority of Japan)

- **Climate index**
 - Pacific Decadal Oscillation (http://jisao.washington.edu/pdo/PDO.latest)

- **Catch data**
 - Statistical Yearbook of Ministry of Agriculture, Forestry and fisheries in Japan
 - Fish groups (26 species) are divided into four groups based on their feeding habit
 - Pelagic planktivores (5 species)
 - Pelagic piscivores (8 species)
 - Demersal piscivores (4 species)
 - Demersal benthivores (9 species)
Data analysis

- **Fishing efforts and Catch Per Unit Effort (CPUE)**
 - Fishing effort: the cumulated days in the year for purse seine and bottom trawl
 - Catch per unit effort
 - Pelagic domain: metric tons / days for purse seine
 - Demersal domain: metric tons / days for bottom trawl

- **Mean Trophic Level**

 \[
 MTL = \frac{\sum_{i=1}^{n} Y_{iy} TL_i}{\sum_{i=1}^{n} Y_{iy}}
 \]

 - Where \(Y_{iy} \) is the catch of species \(i \) in the year and \(TL_i \) is its trophic level from fish base (http://www.fishbase.org/search.php)
Chronological variation in fish community structure in Omura bay

Demersal piscivores
- Flounder
- Sharp toothed eel
- Lizard fish
- Hairtail

Demersal benthivores
- Atlantic butterfish
- Crimson seabream
- Threeline grunt
- Bluefin searobin
- Croaker
- Red seabream
- Black seabream
- Flathead mullet
- Seabass

Pelagic planktivores
- Sardine
- Round herring
- Anchovy
- Flying fish
- Saury

Pelagic piscivores
- Shark
- Jack mackerel
- Amberstrip scad
- Yellowtail
- Chub mackerel
- Japanese Spanish mackerel
- Squid
- Dolphin fish

Demersal fish
- Catch (metric tons)
- CPUE

Pelagic planktivores
- Catch (metric tons)
- CPUE
Change in Mean Trophic Level (MTL)

- The highest level of MTL in the first phase
- The lowest level in the second phase
- Continuous low level in the third phase
The time change was divided into three phases:

The first phase (1960-1979):
- dominated by anchovy in the pelagic domain and characterized a variety of demersal fish species

The second phase (1980-1985):
- the remarkable decline in demersal fish landings with sardine dominance in the pelagic domain

The third phase (1986-2006):
- anchovy return with further reducing demersal fish landings
Environmental change in the demersal domain of the bay

- Increase in the intensity of hypoxia in the central bay in summer
- A downward trend in DO integrated from surface to bottom in the bay
- Increase in accumulated areas of reclamation since the late 1970s
The response of demersal domain to human impacts

- Increase in the area of reclamation
- Eutrophication
- Decrease in the shallow area
- Great development in hypoxia in summer
- Damage to nearshore nurseries
- Reduction in habitat
- Co-occurrence of inappropriate condition
- The loss of habitat
- Collapse of demersal fish
Simplification of fish community structure in the bay

Fish composition

- **Anchovy**
- **Pelagic planktivores**
- **Demersal fish**
- **MTL**

Causes of simplification during the third phase

- **The collapse of demersal fish**
- **The lack of species diversity in pelagic domain**
 - MTL during third phase correlated with anchovy catch \(r = -0.922, p < 0.01 \)
- **The dominance of anchovy with further reducing**
 - Correlation with Basin-scale temperature fluctuation, Pacific decadal oscillation \(r = -0.590, p < 0.01 \)
 - Warm phase in the northwestern pacific may enhance the anchovy dominance
Concluding remarks (1)

• The long-term change in fish community structure of Omura Bay, an enclosed bay in the western Japan, was divided into three phases.

❖ **The first phase (1960-1979):**
 ✓ Anchovy dominance in the pelagic domain with abundant and a variety of demersal fish species

❖ **The second phase (1980-1985):**
 ✓ Remarkable decline in demersal fish landings
 ← Inappropriate habitat conditions
 ✓ Sardine dominance in the pelagic domain
 ← S/A replacement in the northwestern Pacific

❖ **The third phase (1986-2006): Simplified fish community**
 ✓ Anchovy return
 ← Basin-scale change in temperature
 ✓ Further reducing demersal fish landings
 ← No signal of recovery
Concluding remarks (2)

- Fish community structure in Omura Bay, especially in the demersal domain, has been seriously damaged by exacerbating habitat conditions caused by regional human impacts. However, fish composition in the pelagic domain seems to be closely related to large-scale variation in environment.

- This suggest that even in an enclosed coastal bay, for clarifying the mechanism of ecosystem structure changes in combination with the anthropogenic impact, it is indispensible to look at a wider scale feature of the ecosystem including the change in the ocean climate of outer seas such as the East China Sea.