An Update on the IOS Regional Climate Model for the British Columbia Continental Shelf

Mike Foreman, Wendy Callendar, Diane Masson, John Morrison, Angelica Peña, Isaak Fain

Institute of Ocean Sciences
Fisheries and Oceans Canada
Sidney BC
Outline

- model details
- strategy & forcing fields
- preliminary results
- summary & future work
BC Shelf Model

- Developed by Diane Masson & Isaac Fine
- Regional Ocean Modeling System (ROMS) with resolution
 - Horizontal: 3km (236 X 410),
 - Vertical: 30 sigma levels
- Forcing:
 - tides
 - 3 hourly wind and daily atmospheric forcing (NARR)
 - monthly discharge from 21 main rivers
 - monthly open boundary forcing (SODA)
- Hindcast:
 - 1995-2008
 - JGR, in press

ROMS & AVISO SSH EOFs
Strategy for Future Climate Simulations

- Add anomalies to the Masson & Fine forcing & initial fields
 - Wind & heat flux from NARCCAP, IPCC AR4, A2 scenario
 - http://www.narccap.ucar.edu
 - 2041-2070 minus 1971-2000
 - So far only CRCM+ CGCM3 combination
 - Oceanic initial conditions & boundary forcing from CGCM3
 - Freshwater runoff from Morrison et al. (2011) hydrology model that uses NARCCAP precipitation & temperature
- Future 14-year run
Why Anomalies?

- CRCM/CGCM3 doesn’t capture 1971-2000 offshore winds accurately
 - May/Sept differences between observed (black) & CRCM (green) monthly average winds
 - Timing of spring/fall transitions critical for marine ecosystems
Atmospheric Forcing

- **Average annual anomaly ~ +0.5mm/day**
- **Seasonal & regional variations**

<table>
<thead>
<tr>
<th>Month</th>
<th>Precipitation anomaly (mm/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td></td>
</tr>
</tbody>
</table>
Contemporary & Future Freshwater Discharges

- 21 sub-basins
- Except for June-August, more discharge
- Warmer river temperatures
Atmospheric Forcing

- Slightly different patterns for day and night

- Note land/sea differences
Less in April – June (%) because more cloud cover

Could be important for marine photo-synthesis
Average cloud cover anomaly (fraction)

January
February
March
April
May
June
July
August
September
October
November
December

NB: Slightly different patterns for day vs night
Initial and Lateral Boundary Ocean Conditions

- 3D temperature/salinity initial anomalies from CGCM3
 - no active ocean in CRCM
 - Only latitudinal anomalies
 - future will be warmer and fresher

- Seasonal anomalies in temperature, salinity, normal velocity forcing along northern, western, southern boundaries
Results: Eddy Kinetic Energy

Runs with different combinations of contemporary & future forcing show these differences mainly arise from wind
Hecate Current Intensification Producing stronger Haida Eddies

- Stronger counter-clockwise gyre & flows past Cape St James
Results: July Alongshore Current, Temperature & Salinity

- Black lines = temperature, grey lines = salinity
- Future has stronger Vancouver Island Coastal Current and Shelf Break Current
- Possibly stronger upwelling & California Undercurrent?
Salish Sea Summer Surface Currents

Future

Contemporary

• Not much difference
Salish Sea Salinity Anomalies

Salinity Anomaly Along the Salish Sea Thalweg

Depth [m]

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

Distance Along Transect [km]

Latitude

Longitude

Distance Along Transect [km]
Summary

- described development & preliminary results from BC shelf, ocean-only, RCM
 - Future forcing & initial field anomalies computed from NARCCAP CRCM/CGCM fields
 - Run with combinations of future & contemporary forcings to understand changes
Future Work

• More analyses of results

• Other NARCCAP AR4 RCM combinations
 • AR5 RCM anomalies

• Couple to NPZD & marine geochemical ecosystem model
 (Angelica Peña)

Meris chlorophyll, Sept 11, 2011, courtesy Jim Gower & Erika Young
Objectives:

- To detect, understand and predict climate change impacts on:
 - Plankton productivity
 - Nutrient supply, oxygen and carbon content
- Evaluate the potential risk (likelihood) for the development of hypoxia events and corrosive conditions
Biogeochemical / ecosystem model

- Cycle of several biogeochemical elements (N, C, Si(OH)₄ and O₂)
- Two-types of phytoplankton and of zooplankton
- Multiple nutrient limitation of phytoplankton growth
- Dynamic chlorophyll compartments
- Temperature dependence of physiological rates
Acknowledgements

• Fisheries and Ocean Canada:
 • Climate Change Science Initiative
 • Aquatic Climate Change Adaptation Services Program
 • Centre for Ocean Model Development for Application
• Environment Canada
• North American Regional Climate Change Assessment Program (NARCCAP)