Variability of carbon cycle and biological production in the North Pacific estimated from mapping of CO$_2$, alkalinity, and dissolved inorganic carbon

Yukihiro Nojiri
CGER, National Institute for Environmental Studies
with Sayaka Yasunaka (CGER/NIES), Shinichiro Nakaoka (CGER/NIES), Tsuneo Ono (FRA), Hitoshi Mukai (CGER/NIES) and Norihisa Usui (MRI)

Funded by MOE (P.I. Y. Nojiri) and MAFF (P.I. T. Ono)
Bottom-up approach in ocean CO$_2$ sink by pCO$_2$ mapping

- 3 million observations for 1970-2007
- Climatology (ref. year of 2000)
- grid cell 4˚ lat x 5˚ lon

Our goal is to reconstruct pCO$_2$ map with higher spatial resolution and with inter-annual variability by Self Organizing Map (SOM), a kind of neural network.
What is neural network?

The term *neural network* reflects the method’s conceptual connection to the functionality of a (human) brain.

- SOM is one kind of Artificial Neural Networks family of statistical analysis tools. This technique was first applied to estimate pCO_2^{sea} field in North Atlantic by Telszewski et al (2009).
- Method neglecting the temporal & spatial sparseness of the pCO_2 data
- Method able to provide robust basin-wide estimates of the inter-annual variability (*Telszewski et al. 2009*)
- Method allowing high resolution output

\[pCO_2^{sea} = f_{SOM} (SST, MLD, CHL, SSS) + \alpha (t-t_{ref}) \]
Procedure of the SOM approach

Non-linear nature of surface pCO$_2$ can be expressed by SOM functions.
North Pacific pCO₂ Monitoring by NIES-VOS

- **Trans Future 5**
 - Japan – Australia – New Zealand
 - 6 weeks return voyage
 - Data available: Jun.2006 – Dec.2010 (submitted to SOCAT v.2)

- **Pyxis**
 - Japan – USA (east or west coast)
 - 5-8 weeks return voyage
 - Data available: Jul.2002 – Dec.2010 (submitted to SOCAT v.2)

- **Labeling data**
 - 48,374 daily, 0.25° x 0.25° averages
 - water deeper than 500 meters
 - each point co-located with SST, MLD, CHL and SSS
Achievement of NIES VOS for pCO$_2$ measurement

NIES pCO$_2$ measurement is enough intensive to reconstruct North Pacific basin-scale pCO$_2$ distribution.
Parameters

- **MGDSST, Office of Marine Prediction, JMA, Japan**
 - Daily, 0.25° x 0.25° reanalysis
 - Fits very well to *in situ* SST from SOCAT
 - SSTs derived from satellite's infrared sensors (AVHRR/NOAA) and microwave sensor (AMSR-E/AQUA), and *in situ* SSTs (buoy & ship) are used in reanalysis.

- **GLORYS, Mercator Research Centre, CNRS, France**
 - Daily, 0.25° x 0.25° reanalysis
 - NEMO ORCA025, 50 levels, ECMWF operational forcing are used as the results of OGCM.
 - Data assimilated *in situ* temperature & salinity from Argo, XCTD/CTD, and NCEP real-time global SST.

- **MOVE/MRI.COM, MRI, Japan**
 - 10-daily, 0.5° x 0.5° reanalysis
 - System assimilates *in situ* SST & salinity profiles, and SSH anomaly from satellite altimeter into the dynamical model.

- **SeaWiFS/MODIS combined product, NASA, USA**
 - 8-daily, 1/12° x 1/12°
 - Coverage improved by filling the empty pixels with 2002-2008 weekly climatology.
Use of Mercator MLD data set
Consideration of secular increasing trend of pCO$_2$

By changing MLD dataset, the pCO$_2$ estimate improves its seasonality and the interannual variation especially for the 2002-2005 period.
Results ~ monthly pCO$_2$ distribution

Winter: high pCO$_2^{\text{sea}}$ at high latitudes
low pCO$_2^{\text{sea}}$ at mid latitudes

Summer: low pCO$_2^{\text{sea}}$ at high latitudes
high pCO$_2^{\text{sea}}$ at low latitudes

SOCAT output figure
Surface pCO$_2$ mapping with inter-annual variability is used for DIC estimation, with learning data set as SST, SSS, MLD. CHL mapping is not necessary but Si and PO$_4$ climatology are used for carbonate chemistry calculation.
Surface pCO$_2$ mapping with inter-annual variability is used for DIC estimation, with learning data set as SST, SSS, MLD. CHL mapping is not necessary but Si and PO$_4$ climatology are used for carbonate chemistry calculation.
CO₂ flux in the North Pacific

\[\text{flux} = K \cdot (p\text{CO}_2^{\text{sea}} - p\text{CO}_2^{\text{air}}) \]

Gas transfer coefficient: Sweeney et al. (2007)
Wind dataset: CCMP (Cross-Calibrated, Multi-Platform) wind dataset

Surface flux is used for correction in productivity analysis.

High-latitude: weak CO₂ source area
Mid-latitude: strong CO₂ sink area
Low-latitude: weak CO₂ sink or neutral area
Summary and Conclusions for pCO$_2$ mapping

1. Best results obtained by SST, MLD, CHL and SSS as input parameters
 Root mean square error (RMSE) to NIES measurements; 17.8 µatm

2. SOM applicable to the entire basin, no need to divide into several regions
 SOM applicable for over several years

3. Annual mean oceanic CO$_2$ uptake for 7 yrs; 0.44 PgC/y with relatively
 small inter-annual variability

4. Future expansion to basins of global ocean with SOCAT pCO$_2$ dataset
Application of pCO$_2$ mapping to estimate surface DIC

Dissolved Inorganic Carbon (DIC) is a straightforward carbon parameter of biological productivity. Lee (2001) first applied pCO$_2$ mapping to net community productivity estimation for global ocean. Takahashi et al. (1997) global climatology was used. Our new precise pCO$_2$ mapping with inter-annual variability is applicable for production of detailed distribution map of sea surface DIC.

It starts from alkalinity mapping with empirical eq. proposed by Lee et al. (2006).

Estimation of TA (Lee et al. 2006)

$\text{TA} = a + b (\text{SSS} - 35) + c (\text{SSS} - 35)^2 + d (\text{SST} - 20) + e (\text{SST} - 20)^2 [+ f (\text{SST} - 20) \text{Longitude}]$

![TA 2005 FEB](image1)

![TA 2005 AUG](image2)
Comparison of estimated DIC at time series stations

Estimation of DIC, CO2SYS for MatLab (van Heuven et al. 2009)

\[\text{pCO}_2, \text{ TA, SST, SSS, PO}_4, \text{ Si } \rightarrow \text{ DIC} \]

RMSEs of DIC for time series stations were 10.2 μmol/kg.

![Comparison of estimated DIC at time series stations](image)
Monthly sea surface DIC averaged for 2002-2008

North-south and east-west difference in sea surface DIC distribution was well reproduced.
7-year climatology of annual surface DIC distribution

n-DIC (salinity normalized DIC) corresponds SSH (sea surface height) contour. →

Relationship with ocean circulation

Contour: salinity distribution
Salinity is one of major controlling parameter for DIC.
Difference of DIC and n-DIC is the salinity component of DIC.
Areal difference in annual amplitude of surface DIC

100-150 \(\mu \text{mol/kg} \) of DIC amplitude was deduced in North-West Pacific region. It well agrees with observation.
Mixed layer integration of ΔDIC in warming months to deduce NCP

Conceptual idea of upper thermocline integration of DIC change in warming months corrected with air-sea exchange, advection and diffusion to deduce net community productivity (NPP) proposed by Lee (2001).
Subtraction of salinity and flux components from upper thermocline ΔDIC in warming months

Advection component could be related with salinity component.

Salinity and flux (gas exchange) components of ΔDIC (max-min) should be subtracted to estimate the biological signal.

Residual ΔDIC can be compared with satellite PP.

Contour is satellite derived productivity in warming months, converted to the unit in surface DIC change.
Estimating NPP from monthly ΔDIC for upper thermocline

Relatively accurate to integrate for months of developing stratification (4 months from March to July) neglecting diffusion effect.
Deduced NCP from monthly ΔDIC

NCP (t) =

\[
\text{March – April – May – June - July} \\
\text{Area} \cdot \text{MLD (t+1)} \cdot [n\text{DIC (t)} - n\text{DIC (t+1)}] \\
+ \text{Area} \cdot \text{pCO2_flux (t+1)}
\]

Upper thermocline integration of monthly DIC change. → Net Community Productivity estimation

“pCO_2-Alk-DIC mapping method”

White area is less significant than colored area for the NCP estimation.

4 months integration of DIC change for NCP estimation by mapping method is well comparable with satellite NPP.

Ratio suggests distribution of f-ratio.
Inter-annual variation of surface DIC and parameters

Inter-annual variation of surface DIC mapping showed strong correlation with PDO (Pacific Decadal Oscillation).

Statistic shows various relationships of DIC anomaly with ocean parameters.
1. Estimation of DIC distribution with high spatial resolution can be done using result of Neural Network pCO$_2$ mapping. Root mean square error (RMSE) to time series stations were 10.2 μmol/kg.

2. Reasonable adjustment of salinity component and flux influence to deduce NCP (Net Community Productivity) from upper thermocline integration of DIC change.

3. Signal of inter-annual variability related to PDO has been observed over the North Pacific (2002-2008).

4. Future expansion can be done without surface DIC measurement dataset (rare) but needs global pCO$_2$ dataset. Hopefully we will have the improved pCO$_2$ data set from next version of SOCAT.
NIES GHG Monitoring Network by 3D Observation

Acknowledgement:
NIES GHG observation, especially by volunteer ships and aircrafts, are supported by many people of commercial companies, port and airport authorities and technical staff.