Discovery of novel ovatoxin isomers in several Ostreopsis strains in Japan

Toshiyuki Suzukia, Ryuichi Watanabea, Hajime Uchidaa,b, Ryoji Matsushimaa, Hiroshi Nagaib, Takeshi Yasumotoa, Takamichi Yoshimatsue, Shinya Satoc,d, Masao Adachie

a National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan.
b Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo, 108-8477, Japan.
c Royal Botanic Garden Edinburgh, 20 Inverleith Row, EH3 5LR Edinburgh, UK
d Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3JH Edinburgh, UK
e Kochi University, 200 Otsu, Monobe, Nankoku, 783-8502 Kochi, Japan
Ostreopsis spp.

- The dinoflagellate genus, *Ostreopsis*, has an increasingly global distribution

- Some *Ostreopsis* produces palytoxin analogues

- *O. ovata* is held responsible for respiratory illnesses due to inhalation of aerosols during blooms in the Mediterranean region

Dinoflagellate genus

Ostreopsis spp.

(*O. siamensis* *O. ovata* etc 9 species)
Ostreopsis found along the coastal area in Japan
Palytoxins

Ostreopsis

The Soft coral
Palythoa toxica
Human poisoning cases due to consumption of seafood suspected to be contaminated with palytoxins

- Human fatalities due to consumption of seafood suspected to be contaminated with palytoxins were reported in the Philippines, after consumption of the crab *Demania reynaudii* (1988), and in Madagascar following consumption of the sardine *Herklotsichthys quadrimaculatus* (clupeotoxism) (1999)

- Respiratory illness has also occurred when people were exposed to *Ostreopsis ovata* bloom aerosols during recreational or working activities, in Italy (2006)

![D. reynaudii](image1)

![H. quadrimaculatus](image2)

![Ostreopsis ovata](image3)
Blue humphead parrotfish (*Scarus ovifrons*) poisoning in Japan (*Palytoxin like poisoning*)

- Symptoms: Rhabdomyolysis, a syndrome injuring skeletal muscle, causing muscle breakdown, and leakage of large quantities of intracellular (myocyte) contents into blood plasma
- The symptoms are similar to palytoxin poisoning
- Palytoxins have not been confirmed yet from the blue humphead parrotfish which was identified as the causative food in the poisoning

![Diagram](image)

- *Ostreopsis*
- ?
- Palytoxin
- ?
- *Scarus ovifrons*
- The Soft coral *Palythoa* spp.
Blue humphead parrotfish (*Scarus ovifrons*) poisoning in Japan (*Palytoxin like poisoning*)

In 2000
1 patient

In 2001
2 patients

In 2003
3 patients

In 2004
2 patients
1 person died

In 2007
9 patients

In 2011
4 patients were reported in Tokyo in November
1 patient was reported in Miyazaki in March
Objectives

• LC-MS/MS analysis of palytoxin analogues in several Ostreopsis strains collected in Japan

• LC-MS/MS analysis of palytoxin analogues in the blue humphead parrotfish (Scarus ovifrons) which was identified as the causative food in human poisoning cases in Tokyo and Miyazaki in 2011
LC-MS/MS analysis of palytoxin analogues in several Ostreopsis strains collected in Japan
References

LC-MS/MS chromatogram of palytoxin

LC-MS condition

Column: Hypersil-BDS-C8
(150 mm x 2 mm i.d)
Flow rate: 0.2 mL/min
Mobile phase: A water, B 95% MeCN
both containing 2 mM HCOONH$_4$ and 50 mM HCOOH

Step 1: 5 % B 100%B for 15 min
Step 2: 100 % B for 5 min

Detection
[M+2H-H$_2$O]$^{2-}$ 1331$>$ 327

LOD: 10ng/ml (0.1ng)
LC-MS/MS chromatogram of palytoxin analogues in *Ostreopsis* collected in coastal waters in Japan

Ostreopsis culture

Cells were harvested by centrifugation at 3000 rpm

Toxins were extracted with MeOH

An aliquot of the MeOH extract was analyzed by LC-MS/MS

Peak #1: Ovatoxin-a
Peak #2: Ovatoxin-b
Peak #3: Ovatoxin-b isotope
Peak #4: Ovatoxin-d
Peak #5: Ovatoxin-a isotope
Peak #6: Ovatoxin-e
Peak #7: Palytoxin
LC–MS/MS chromatogram obtained from the mixture of Italian and Japanese *Ostreopsis* strain extracts

(A) Ovatoxin-a AC from Japanese culture

(D) Ovatoxin-e AC from Japanese culture

AC: Porf. Adachi Culture
[M+2H-nH2O]^{2-}

- **A**
 - 327.1935 (+4.5 ppm)
 - 327.1920 (345.2026)
- **B**
- **C**
 - 726.4040 (-3.5 ppm)
 - 786.4276 (-3.0 ppm)
 - 804.4382

Additional masses:
- 744.4170
- 377
- 419
- 406
- 726
- 744
- 786
- 804

m/z

- 300
- 400
- 500
- 600
- 700
- 800
- 900
- 1000
- 1100
- 1200
- 1300
- 1400
LC–MS/MS spectra of palytoxin analogues in *Ostreopsis*

Palytoxin

- A
- C
- \([\text{M+2H-nH}_{2}\text{O}]^{2-}\)

Ostreocin-D

- A-CH₃
- C
- \([\text{M+2H-nH}_{2}\text{O}]^{2-}\)

Ovatoxin-a AC

- A
- C
- \([\text{M+2H-nH}_{2}\text{O}]^{2-}\)

Ovatoxin-b

- A +2CH₂+O
- C
- \([\text{M+2H-nH}_{2}\text{O}]^{2-}\)
High-resolution LC-MS/MS product ion spectra obtained for authentic palytoxin standard by Qtof LC-MS/MS
High-resolution LC-MS/MS product ion spectra obtained for Ovatoxin-a AC by Qtof LC-MS/MS
Proposed fragmentation diagram of palytoxin
Elemental formulae of palytoxin analogues determined by QTOF LC-MS spectra on the positive mode

<table>
<thead>
<tr>
<th></th>
<th>m/z (measured value)</th>
<th>Formula</th>
<th>Tolerance (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovatoxin-a AC</td>
<td>2647.5062</td>
<td>$C_{129}H_{224}N_3O_{52}$</td>
<td>3.2</td>
</tr>
<tr>
<td>Ovatoxin-d AC</td>
<td>2663.4918</td>
<td>$C_{129}H_{224}N_3O_{53}$</td>
<td>-0.3</td>
</tr>
<tr>
<td>Ovatoxin-e AC</td>
<td>2663.4841</td>
<td>$C_{129}H_{224}N_3O_{53}$</td>
<td>-3.2</td>
</tr>
</tbody>
</table>
Clades classified by the phylogenetic analysis reported in our previous study (Sato et al., 2011)
Toxin profiles of several *Ostreopsis* strains collected in Japan and Italy (*1) analyzed by MRM LC-MS/MS

*1

Ostreopsis strains

- ostreocin-d
- ovatoxin-e AC
- ovatoxin-d AC
- ovatoxin-c AC
- ovatoxin-b AC
- ovatoxin-a AC
- palytoxin
Total cellular toxin contents of several *Ostreopsis* strains collected in Japan and Italy (*1) analyzed by MRM LC-MS/MS.

1
Summary

• Novel isomers of ovatoxin-a, -b, -d, -e were found in Japanese Ostreopsis. The isomers of ovatoxin-a,-b,-d, and –e detected in Japanese Ostreopsis were tentatively named ovatoxin-a AC, -b AC,-d AC and –e AC.
• LC-MS analysis revealed that ovatoxin-a AC is a structure analogue of palytoxin reduced a hydroxyl group at both C16-C20 and C53-C73 moieties of palytoxin.
• Toxin profiles of Ostreopsis collected in middle to southern coastal area in Japan were clarified by LC-MS/MS
• The toxin contents of some strains collected in Japan were comparable to that obtained in a strain (KAC 85) collected in the Italian coast where human health problems occurred
LC-MS/MS analysis of palytoxin analogues in the blue humphead parrotfish (*Scarus ovifrons*) which was identified as the causative food in human poisoning cases in Tokyo and Miyazaki in 2011
Human poisoning cases by consumption of the blue humphead parrotfish in 2011

• In March 2011, the human poisoning case by consumption of the blue humphead parrotfish occurred in Miyazaki. One patient was diagnosed as the palytoxin like poisoning

• In November 2011, the human poisoning case by consumption of the blue humphead parrotfish occurred in Tokyo. Four patients were diagnosed as the palytoxin like poisoning

• The blue humphead parrotfish samples caused the human poisoning were provided to NRIFS to identify palytoxin by LC-MS/MS
meat, head, curry soup (20g) homogenize with 90% MeOH (180mL)

palytoxin for recovery check (30 ppb)

centrifugation at 3000 rpm for 2 min

20 mL supernatant

hexane (20 mL)

distilled water (8 mL), chloroform (30 mL)

aqueous MeOH hexane
distilled water (8 mL), chloroform (30 mL)

aqueous MeOH chloroform

evaporation

50% MeOH (1 mL) or 5% MeOH (1mL)

(head, curry soup) (meat)

20uL injection to LC-MS/MS
LC-MS/MS analysis of the blue humphead parrotfish

Fish meat causing of the human poisoning case (A)
Fish meat (A) fortified with palytoxin at 30 ppb
Recovery (%) of palytoxin from the blue humphead parrotfish fortified with palytoxin at 30 ppb

<table>
<thead>
<tr>
<th></th>
<th>Recovery (%)</th>
<th>LOQ (ppb)</th>
<th>LOD (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>58.3</td>
<td>1.18</td>
<td>0.35</td>
</tr>
<tr>
<td>Curry soup</td>
<td>66.7</td>
<td>1.50</td>
<td>0.45</td>
</tr>
<tr>
<td>Meat</td>
<td>57.1</td>
<td>1.60</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Summary

- LC-MS/MS method of palytoxin analogues in cooked seafood samples was developed.
- The LOD and LOQ are 0.5 and 2 ppb, which are lower than the EFSA regulatory level (30 ppb) of palytoxins in seafood.
- Palytoxins were not detected in the blue humphead parrotfish samples causing the human poisoning in 2011.
- Palytoxins are not the causative toxin in the blue humphead parrotfish poisoning in Japan.