Direct and indirect evidence for massive differences in jellyfish biomass between the Pacific and Atlantic: implications for fisheries bycatch?

Martin Lilley¹,²
S.E. Beggs³, T.K. Doyle⁴, V.J. Hobson¹, K.H.P. Stromberg⁵, G.C. Hays¹

¹ Swansea University, UK
² MIO, Aix-Marseille Université, France
³ Agri-food & Biosciences Institute, N.Ireland
⁴ Coastal and Marine Research Centre, Cork, Ireland
⁵ Swedish Meteorological and Hydrological Institute, Sweden
Introduction

Historical jellyfish data:
 Incidental observations and bycatch
 Few specific long-term datasets

Jellyfish blooms are attracting widespread attention
Public interaction – many sightings
 But are blooms actually anything new?

Few reviews of long-term quantitative data
Current projects collating data and assessing qualitative data
Part 1 – Gelatinous biomass assessment

Sampling method?

Numerical data more widely available
but assessment of size absent

Biomass allows assessment of predation potential and prey availability
but one individual or many?

Ideally both would be recorded simultaneously
Biomass trends

Global database estimated from the epipelagic.

Low sample sizes excluded

Exponential decrease with depth. $r^2 = 0.543$, $p < 0.001$

Highest biomass: enclosed lakes

Lowest biomass: mid ocean

Species composition

Proportional composition of taxa biomass

Species composition of groupings not consistent with depth. e.g. Semaeostomes

Life-history dictates depth of observations

Ctenophores predominantly *Mnemiopsis*.

n = 11, 13, 14, 6, 8, 6 study sites

Location of Biomass estimates

Lilley et al. (2011)
Marine Biology 158: 2429-2436.

58 data sets/sites
Notable gaps
 e.g. central oceanic

Additional data may be available if mined from the sources of overview databases.
Part 2 – Applying biomass estimates at an ocean basin scale and their effects on predators.

Known predators of gelatinous zooplankton

Up to 200kg / day
Leatherback turtles: An indicator of gelatinous blooms?

- Endangered species
- Wide distribution, independent populations
- Deep diver
- Feeding migrations
- Bi-/Tri-annual nesting

Migrations studied through satellite tracking
Atlantic vs Pacific
An applied case

Tracking study
(Bailey et al. 2012)
Migration differences

Behaviours as a proxy for foraging

What is the evidence for a difference between the Atlantic and Pacific?
Atlantic vs Pacific
Population differences

Nesting interval – Pacific > Atlantic
Clutch Size - Pacific < Atlantic
Body size - Pacific < Atlantic

Reduced resource availability for Pacific leatherbacks

Result:
Current decline in Pacific population size

Generic issues:
Predation/culling/bycatch
Changes in beach condition/Temp
Poor foraging?
Reduced survival

Kraer & Van Essen-Fishman (ian.umces.edu/imagelibrary/)
Atlantic vs Pacific
Jellyfish Biomass

Is there a difference between Atlantic & Pacific gelatinous biomass?

Open water sites only (n=16/ocean)

Samples within top 200m

Few truly oceanic samples, typically coastal or continental shelf
Atlantic vs Pacific
Jellyfish Biomass

Median Biomass – Atlantic > Pacific

Open water sites
Median biomass
Atlantic 20:1g Pacific

N=16 per ocean
Atlantic vs Pacific
Jellyfish Biomass

Median Biomass – Atlantic > Pacific
Maximum Biomass – Atlantic > Pacific

Open water sites
Most productive site (mean biomass)
Atlantic 15:1g Pacific

Best sample biomass
Atlantic 219:1g Pacific

N=16 per ocean
Atlantic vs Pacific
Jellyfish Biomass

Median Biomass – Atlantic > Pacific
Maximum Biomass – Atlantic > Pacific

Biomass caveats:
Spatial variability
Energy density
Coastal research emphasis

Does turtle behaviour overlap with prey availability?
Atlantic vs Pacific
Turtle behaviour

Percentage frequency graph of daily distance travelled

Can identify:
1) Foraging
2) Migration
3) Compare rate of travel between individuals or locations

Bimodal frequency between travelling and foraging
Atlantic vs Pacific

Turtle behaviour

A Atlantic Travel Speed

Bimodal frequency between travelling and foraging

B Pacific Travel Speed

Unimodal frequency in the Pacific – More migration, less foraging
Atlantic vs Pacific

Turtle behaviour

Atlantic Dives

Dives peak around the productive gyre region

Gyre deeper

Shallow dives

No peak in diving behaviour

= less gelatinous prey?

Or out of reach?

Pacific Dives

South Pacific Gyre

Nutricline

Deeper dives

Gyre deeper

Shallow dives

No peak in diving behaviour

= less gelatinous prey?

Or out of reach?
Atlantic vs Pacific
Turtle behaviour

The exception:
• Coastal migration path
• Data similar to Atlantic individuals
 • Larger female
 • Larger clutch sizes
 • Productive upwelling region
 • More productive for turtles?

Highest recorded East Pacific jellyfish biomass

East Pacific coastal frequency of travel speeds n = 1
Atlantic vs Pacific

Conclusions

Biomass estimates would support hypothesis of a reduced food resource in the Pacific

Broadscale evidence for prey trends (Brotz et al 2012)
- SE Pacific – gelatinous decline
- Atlantic – stable/increasing

Foraging response?

Turtles may no longer forage in best jellyfish regions because of bycatch
(Mismatch productivity & foraging locations)

Turtle behaviour may be useful as an indicator of productive regions for gelatinous biomass
One last thought

What role do smaller gelatinous species, such as these small 4g Linuche, play in the diet of turtle species?

(Fossette et al 2012, Biology Letters 8:351-4.)

Questions? – lilley@obs-vlfr.fr
Poster S7-7 / S7-8

Thanks to:
PhD supervisor
Graeme Hays
(Swansea University)

Fabien Lombard (UPMC/LOV)
for his continued support and funding for this visit.