Salmon & jellyfish: bumping elbows in the Northern California Current

Jim Ruzicka1, Elizabeth Daly1, Richard Brodeur2

1Oregon State University
2NOAA Fisheries
Goals:

- Explore effects of variable trophic network structure on production of juvenile salmon in Northern California Current (NCC)
- Develop an end-to-end trophic model to quantify net direct and indirect effects of large jellyfish on juvenile salmon
- Examine relation between local juvenile salmon feeding and jellyfish biomass
- Examine relationship between observed Columbia River salmon production and jellyfish abundance
The sea nettle, *Chrysaora fuscescens*
NCC Coastal Upwelling Ecosystem: model domain

Full domain: 42.0 - 48.34°N; 1-183m; 26,000 km²

Coverage years: 1999-2011…

Seasons: June – September

Platform: ECOTRAN (Steele & Ruzicka, 2011)

Currency: wet weight (jellyfish normalized to forage fish water content)
“ECOTRAN”

- maps flow of production UP food web
- account for bioenergetic budgets of each group
- propagation of variability & uncertainty (incl. migration)

<table>
<thead>
<tr>
<th></th>
<th>NO3</th>
<th>NH4</th>
<th>P1</th>
<th>C1</th>
<th>C2</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C1</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.5</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>F1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>M0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>0.2</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>NH4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>feces</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

consumption = production + metabolism + non-assimilated

5/23
Upwelling driver
“unit” driver

Sensitivity scenarios
Trophic network efficiency metrics
NPZD driver

Dynamic time-series scenarios
Foraging relation scenarios

NH_4^+
Pelagic survey

Day sampling (Night off CR)
1998 - 2011
May, June, September

264 Rope Trawl fished at the surface
Fishing width = 30 m

Nordic trawl
30 x 20m
How important are jellyfish? (in terms of energy flow)
Reach: contribution to upper trophic levels

Footprint: demand on lower trophic levels
Three juvenile salmon types
(abundance time-series & diets)
Yearling: 1 winter in freshwater more abundant in June
Sub-Yearling:
No winter in freshwater (smaller) more abundant in September
Sea Nettles

Coho Yrlng - June
Coho Yrlng - Sept
Chinook SubYrlng - June
Chinook Yrlng - Sept
Chinook Yrlng - June

DIET

Suchman et al., 2008
Daly et al., 2009
Sensitivity Scenario:

- Which functional groups have the strongest effects on juvenile salmon production?
 - Estimate juvenile salmon response to a sequential, fixed change across each trophic linkage in the model
- Estimates effect of high jellyfish biomass across functional groups
 - Scenario at 1 STD increase over mean biomass (6.2 + 5.8 t/km²)
PRODUCERS ➔

CONSUMERS

- large phyto
- small phyto
- micro-Zoop
- small copepod
- invert larva
- pteropod
- pelagic shrimp
- macro-Zoop
- small jelly-herbivore
- herring
- anchovy
- juv. rockfish
- juv. other fish

- micro-Zoop
- large copepod
- small copepod
- invert larva
- pteropod
- amphipod
- pelagic shrimp
- macro-zoop
- small jelly-herbivore
- small jelly-carnivore
- large jellyfish
- E. pacifica
- squid
- coho yearling
- planktiv. rockfish
- hake
- small benthic fish
- juv. rockfish
- juv. other fish
Sensitive to direct increase in prey availability
Sensitive to increase in energy available to prey
Negative effect of adding a trophic level
Two Most Influential Competitors

Direct: Pacific hake
Indirect: jellyfish (Chrysaora fuscens)
juveni
le sal
juveni
le fish
≈18%

Relative Change in Production

-0.5
-0.4
-0.3
-0.2
-0.1
0

juvenile fish
juvenine salmon

small copepods
macro-zooplankton
juven. rockfish
juven. fish (other)
sardine
coho yearling
Chinook subyearling
Jack mackerel
hake
pacific rockfish
common mure
large pinnipeds
large odontocetes
Is there a relation between local feeding success and jellyfish biomass?
Index of Feeding Intensity

Sea Nettle Biomass (quantile)

June

- Coho yearling
 - 386
 - 50
 - 169

- Chinook subyearling
 - 27
 - 17
 - 94

- Chinook yearling
 - 133
 - 38
 - 133

September

- Coho yearling
 - 114
 - 37
 - 34

- Chinook subyearling
 - 128
 - 68
 - 102

- Chinook yearling
 - 26
 - 15
 - 22

Sea Nettle Biomass (quantile)
Is there a relationship between observed Columbia River salmon production and jellyfish abundance?
SALMON RETURNS

Spring&Summer-run Chinook
Fall-run Chinook
coho

Bonneville dam

19/23
SALMON RETURNS

Bonneville dam

Returns by smolt-entry year & life-history

coho yearling
SALMON RETURNS

Bonneville dam

Returns by smolt-entry year & life-history

Sprng&Smmr yearling
Coho yearling

June

September

Adult returns

1 ocean year

\(\ln(\text{Sea Nettle biomass}) \)

\(R^2 = 0.09 \)

\(R^2 = 0.43^* \)
Fall Chinook subyearling

June

September

Spring/Summer Chinook yearling

June

September

Adult returns

3 ocean years

$\ln(\text{Sea Nettle biomass})$

$\ln(\text{Sea Nettle biomass})$

$R^2 = 0.56^{**}$

$R^2 = 0.51^*$

$R^2 = 0.76^{**}$

$R^2 = 0.7^{**}$

21/23
Annual age structure not yet available extrapolated from 99-10 mean (excluded from correlation)

Fall Chinook subyearling

Summer Chinook

June

- 3 ocean years
- Adult returns

\[R^2 = 0.56^{**} \]

\[R^2 = 0.51^{*} \]

Spring/Summer Chinook yearling

June

- 3 ocean years
- Adult returns

\[R^2 = 0.76^{**} \]

\[R^2 = 0.7^{**} \]

In(Sea Nettle biomass)
Conclusions:

- Juvenile salmon are sensitive to indirect competition from *Chrysaora fuscescens*
 - Otherwise insensitive to indirect trophic pathways

- Interannual correlation between adult salmon returns and *C. fuscescens* biomass during year when smolts enter the ocean
 - True for all three life-history stages examined
 - Relation to June jellyfish biomass is not robust

- Inverse relation between local jellyfish abundance and feeding incidence of juvenile salmon in September
 - (using <100 m isobath restriction)

- 1 STD *C. fuscescens* scenario estimates 18% reduction in salmon production
Thanks

- University of Oregon ACISS cluster
 - Tom Conlin

- Birding Crew
 - Jen Zamon & Elizabeth Phillips

- Zooplankton Crew
 - Cheryl Morgan & Jesse Lamb

- Krill Crew
 - Jen Menkel & Tracy Shaw

- Predator Crew
 - Bob Emmett & Andrew Claiborne

- PacFIN & RecFIN fisheries databases

- Diets
 - Elizabeth Daly & Todd Miller

- Funding
 - US GLOBEC Pan-Regional Synthesis & Bonneville Power Administration

- Brian Beckman, Joe Fisher, Vlada Gertseva, Cindy Bucher, Paul Bentley, David Teel, Ed Casillas, Bill Peterson

- The captains and crews of the F/V Frosti & F/V Piky