Biological hot spots emerging along the pathway of Pacific summer water in the western Beaufort Sea

Eiji Watanabe¹, Michio J. Kishi¹,², Akio Ishida¹,³, Maki N. Aita¹, and Takeshi Terui¹,⁴

¹Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
²School of Fisheries Sciences, Hokkaido University, Sapporo, Japan
³Department of Social Environment, Fuji Tokoha University, Fuji, Japan
⁴National Institute of Polar Research, Tachikawa, Japan
Role of Pacific Water Transport

Pacific water transport with heat and biogeochemical materials should be a key for basin ecosystem!

Does sea ice reduction enhance biological activities in Arctic basin?

Introduction
Phytoplankton Response to Eddy Activities

Impact of ocean dynamics on Arctic marine ecosystem has a lot of uncertainties.

Large warm Beaufort eddy is observed by R/V Mirai in 2010.

Primary productivity regulated by Beaufort shelf-break eddies is addressed using an eddy-resolving ice-ocean model.

How do ocean dynamics such as shelf-water transport, turbulent mixing, upwelling produce biological hot spots?

Nishino et al. [2011]
Model and Experimental Design

NEMURO (North Pacific Ecosystem Model Used for Regional Oceanography)

Reasonable performance in global and Arctic regions [Sumata et al., 2010 / Zhang et al., 2010]
- analysis of shelf process has been difficult due to coarser model resolution

Coupled to physical ice-ocean model COCO (2.5 km ver.)
- Relationships of Beaufort shelf-break warm eddies with ice extent and wind were addressed [Watanabe and Hasumi, 2009, JPO / Watanabe, 2011, JGR]

Integrated from March to November
- NCEP atmospheric forcing in 2003
- Pacific water inflow at Bering Strait
- Initial and lateral boundary condition of nitrate and silicate: WOA09
Eddy-like Chlorophyll Features

Swirling structures of phytoplankton biomass north of Point Barrow

Model: 0.4 μM (≈ 0.6 mgChl/m³)

OBS: 0.5 ~ 1.5 mgChl/m³

MODIS, Nishino et al. [2011]
Seasonal Transition of Bloom and Eddy

Phytoplankton bloom occurs following summertime sea ice retreat. Warm eddies are then generated north of Barrow Canyon after July.

Phytoplankton Bloom

Eddy Activity

Eddy Stage: generation, develop, maturity, decay

Biological Stage?

Mar Apr May Jun Jul Aug Sep Oct Nov
Primary productivity is tracked following life stages of shelf-break eddies.

Surface gross primary production rate in Beaufort shelf-break region $[10^{-2} \, \mu \text{M/day}]$

- Warm anti-cyclonic eddies are generated north of Barrow Canyon.
- Primary production continues at center of July Eddy moving offshore.
- Eddy-induced transport of shelf water with high primary productivity.
- Shelf water is trapped along eddy edge via clockwise rotational flow.
Role of Shelf Water Transport

Relative importance of shelf-water transport on productivity is estimated

Primary production rate across July Eddy $[10^{-2} \mu \text{M/day}]$

- All NEMURO values are reset to zero in Canada Basin area on July 24
- Similar spatial pattern with eddy-like structure is simulated
- Water exchange with background basin environment is not an essential process

Primary productivity inside July Eddy is maintained by consuming residual of nutrient taken at initial eddy stage
Eddy Maturity Stage

Primary production is maintained even after offshore migration

Gross primary production rate \([10^{-2} \mu \text{M/day}]\)

Surface central area of eddy is a hot spot of primary production due to enough light, nutrient, and warm condition

<table>
<thead>
<tr>
<th></th>
<th>Light</th>
<th>Nut</th>
<th>Temp</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>B</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>
Role of Vertical Turbulent Mixing

Relative importance of vertical mixing on productivity is estimated

Nutrient redistribution due to vertical diffusion is excluded from Aug. 27 to Sep. 19 in 2nd sensitivity experiment

Vertical diffusion rate is the same order as tidal mixing around narrow straits

Less net upward nutrient flux accounts for reduction of surface primary productivity

Vertical turbulent mixing of $O(10^{-2} \text{ m}^2/\text{s})$ drives exchange with underlying nutrient-rich water and enhances primary productivity inside eddies
Role of Vertical Flow

Relative importance of vertical flow on productivity is estimated

Nutrient redistribution due to vertical advection is excluded from Aug. 27 to Sep. 19 in 3rd sensitivity experiment

Wind-driven Ekman vertical velocity [m/day]

Vertical diffusivity [m²/s] and velocity [m/day]

Local upwelling/downwelling event of $O(1 \text{ m/day})$ has just a minor contribution to primary productivity after eddy development
Primary productivity is weakened in Oct.

Light limitation due to solar incidence ceases PP before sea ice freezing.
Modeled response of primary productivity to Beaufort shelf-break warm eddies is examined following eddy life stages.

Time lag between phytoplankton bloom and eddy generation is an important index to determine biological regimes in Canada Basin.

Earlier or longer shelf bloom would significantly change eddy-induced primary productivity in basin interior.
Monitoring the seasonal and annual changes in fluxes and components at multiple sites having different nutrient supply system

Understanding how the response of ecosystem is going to change

Previous sediment trap stations

Organic matters from deeper layer or shelf water or eddies?
References

Western Arctic primary productivity regulated by shelf-break warm eddies
J. Oceanogr., 68, pp703-718

Watanabe, E. [2011]
Beaufort shelf break eddies and shelf-basin exchange of Pacific summer water in the western Arctic Ocean detected by satellite and modeling analyses

Watanabe, E., and H. Hasumi [2009]
Pacific water transport in the western Arctic Ocean simulated by an eddy-resolving coupled sea ice-ocean model
J. Phys. Oceanogr., 39, pp2194-2211

Available from <http://www.geocities.jp/ejnabe_arctic/>