The Barents and Chukchi Seas: Comparison of Two Arctic Shelf Ecosystems

George L. Hunt, Jr., Arny L. Blanchard, Peter Boveng, Padmini Dalpadado, Kenneth Drinkwater, Lisa Eisner, Russ Hopcroft, Kit Kovacs, Brenda Norcross, Marit Reigstad, Paul Renaud, Martin Renner, Hein Rune Skjoldal, George Andrew Whitehouse, Rebecca Woodgate
Outline

• Geography and Fisheries
 – Location, Size, and Bathymetry
 – Physical Oceanography
 – Fishery Catches

• Comparisons of Standing Stocks and Productivity
 – Fish, Seabirds, Marine Mammals
 – Zooplankton
 – Nutrients, and Primary Production

• Potential Mechanisms Responsible for Differences in Fish
 – Water Depth and Carbon Export
 – Water Inputs and their Sources
 – Advection of Heat
 – Advection of Plankton
Location Map

Figure from Arrigo et al., 2008
Currents in the Chukchi and Barents Seas

Bering Sea Water - Green
Alaska Coastal Current - Red
Siberian Coastal Current - Blue

Figure from Norwegian Polar Institute
Fishery Catches

Chukchi Sea Catch

Barents Sea Catch

Figures from the Sea Around Us Project
Primary Production & Nitrate

<table>
<thead>
<tr>
<th></th>
<th>Chukchi Sea</th>
<th>Barents Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Productivity</td>
<td>Min</td>
<td>20</td>
</tr>
<tr>
<td>1998-2006 gC m$^{-2}$ y$^{-1}$</td>
<td>Max</td>
<td>>400</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>100</td>
</tr>
<tr>
<td>Nitrate</td>
<td>ACW AW</td>
<td>5 µMl$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20-25 µMl$^{-1}$</td>
</tr>
</tbody>
</table>

(Sources: Primary Production: Sakshaug, 2004; Ellingsen et al., 2008; Walsh et al., 2005; Hill et al., 2005; Lee et al., 2007; Nitrate- Sakshaug 2004; Walsh et al., 2005)
<table>
<thead>
<tr>
<th>Stock or Production Measured</th>
<th>Barents Sea</th>
<th>Chukchi Sea (area adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisheries Removals (2010)</td>
<td>1.0×10^6 mt y$^{-1}$</td>
<td>0.0013×10^6 mt y$^{-1}$</td>
</tr>
<tr>
<td>Fish Stocks (5 most abundant species)</td>
<td>5.9×10^6 mt</td>
<td>0.25×10^6 mt</td>
</tr>
<tr>
<td>Nesting Seabirds (individuals)</td>
<td>8.0×10^6</td>
<td>4.5×10^6</td>
</tr>
<tr>
<td>Total Seabirds</td>
<td>$16 \times 10^6 + ??$</td>
<td>24×10^6</td>
</tr>
<tr>
<td>Pinnipeds (individuals)</td>
<td>1.1×10^6</td>
<td>2.2×10^6</td>
</tr>
<tr>
<td>Cetaceans (individuals)</td>
<td>0.14×10^6</td>
<td>0.07×10^6</td>
</tr>
<tr>
<td>Crustacean Zooplankton (dry biomass)</td>
<td>$6-7$ g m$^{-2}$</td>
<td>2.1 g C m$^{-2}$</td>
</tr>
<tr>
<td>Primary Production (model results)</td>
<td>102 g C m$^{-2}$y$^{-1}$</td>
<td>100 g C m$^{-2}$y$^{-1}$</td>
</tr>
<tr>
<td>Export to Benthos (% total ann. Prim. Prod)</td>
<td>34-47%</td>
<td>56%</td>
</tr>
<tr>
<td>Benthos, overall mean, wet biomass</td>
<td>166 g m$^{-2}$</td>
<td>381 g m$^{-2}$</td>
</tr>
</tbody>
</table>
Preliminary Findings

• Is the Barents more productive than the Chukchi?
 – Fisheries stocks and catches YES
 – Marine Birds and Mammals not clear
 – Primary production NO

• Possible Mechanisms
 – Orientation of Currents
 – Heat content of advected waters
 – Temperature at the surface and at depth
 – Depth (bathymetric profile)
 – Abundance of zooplankton in advected water
Currents in the Chukchi and Barents Seas

Figure from Norwegian Polar Institute

Bering Sea Water- Green
Alaska Coastal Current- Red
Siberian Coastal Current- Blue
100 m Mean Temperatures (1977-96)

Winter (Feb-April)

Summer (August-October)

Seasonal Changes in Kola 0-200 m average temperature

Source: K. Drinkwater, IMR, Bergen
Bering Strait Temperatures

SST 26 August 2004

Woodgate & Aagaard 2005

Temperatures at 9 m above the bottom
Colors in lower figure coded to moorings at
Woodgate
Areal Distribution by Depth

Figures from Martin Jakobsson, 2002
Zooplankton Biomass

<table>
<thead>
<tr>
<th>Chukchi Sea Water Mass</th>
<th>Chukchi Sea Biomass (gm⁻² dry weight)</th>
<th>Barents Sea Water Mass</th>
<th>Barents Sea 2008 Biomass (gm⁻² dry weight) /SD (number of stations)</th>
<th>Barents Sea 2009 Biomass (g m⁻² dry weight) /SD (number of stations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Water</td>
<td><0.5</td>
<td>Coastal Water</td>
<td>3.90/2.57 (3)</td>
<td>13.5/9.12 (4)</td>
</tr>
<tr>
<td>Anadyr Water</td>
<td>2-4</td>
<td>Arctic Water</td>
<td>4.52/3.50 (6)</td>
<td>5.34/4.73 (28)</td>
</tr>
<tr>
<td>Bering Shelf Water</td>
<td>0.2-1.2</td>
<td>No. Atlantic Water</td>
<td>8.49/7.01 (41)</td>
<td>7.32/4.21 (73)</td>
</tr>
<tr>
<td>Overall</td>
<td>2.1</td>
<td>Polar Front Water</td>
<td>5.99/2.35 (8)</td>
<td>5.78/6.79 (58)</td>
</tr>
</tbody>
</table>

Barents Sea Data courtesy of P. Dalpadado; Chukchi data from Piatt & Springer, 2003; Hopcroft et al., 2010
Conclusions

- Is the Barents more productive than the Chukchi?
 - Fisheries stocks and catches YES
 - Marine Birds and Mammals not clear
 - Primary production NO

- Possible Mechanisms
 - Orientation of Currents: Chukchi- N/S; Barents- E/W
 - Heat content of advected waters: Chukchi-cold; Barents- Warm
 - Temperature at the surface and at depth: Warmer in So. Barents and at depth in north
 - Depth (bathymetric profile): Chukchi much shallower
 - Abundance of zooplankton in advected water: Barents richer, available earlier in spring; also from north