When are models good enough? Assumptions and uncertainty in forecasts of ecosystem state and service supply

Edward J. Gregr, Kai M.A. Chan, Villy Christensen

Institute for Resource and Environmental Studies, UBC

Communicating forecasts, uncertainty and consequences of ecosystem change
Nanaimo, BC, October 2013

Funding:
The Nature Conservancy
NSERC
Hampton Fund
BRITE
Ecosystem models & decision making

“There is a catastrophic misunderstanding about the capability of scientists to provide advice about large-scale dynamics.”
- Carl Walters (2005)

Time to model all life on Earth

Purves et al. 2013, Nature
The problem with uncertainty

• Models use assumptions to reduce scope, creating implicit uncertainties
• If assumptions are implicit, uncertainties are hidden
• It's complicated, and not sexy
• Overconfidence in model results
How implicit assumptions compromise the utility of ecosystem models for decision making

Gregr & Chan (in prep)

- Extracted EBM-related literature (1990-2012) (n=560)
- Selected the most popular based on citation rate (n=60)
- Reviewed stated policy relevance, treatment of uncertainty, and design assumptions
Popular papers treat uncertainties and assumptions poorly

- Over half largely ignored uncertainty
- Model design assumptions were mostly implicit
- < 10% described a relevant mgmt application
Implications

Not addressing assumptions & uncertainties:

• Compromises uptake of results
• Can lead to misunderstandings & bad decisions
• Cripples the building of coupled-models

• Good work on uncertainty being done, but papers are not being read
 Fawcett and Higginson 2012 (PNAS)
Clarity is (part of) the solution

To improve understanding:
• A clear research question, objectives
• Describe uncertainties
• Articulate design decisions (Extents, resolution, process, data)

• Is the pursuit of understanding sufficient?
Spiral of complexity

- Adding information to a model assumed to improve accuracy and precision
 - New, improved data
 - Improved resolution
 - New, improved processes

- Costly
- Can lead to unresponsive, overly complex models
- Unclear decision relevance

- No clear end point ...
Sufficiency

A model is sufficient when additional information will not change the decision (Phillips 1984)

• Requires decision context
 (Alternatives, objectives, risk tolerance)

• Contextual sufficiency:
 All model assumptions credible

• Technical sufficiency:
 Predicted difference between alternatives within risk tolerance
Case study

- Sea otter trophic cascade
- Conflict between otters & fisheries
- Management problem:

How to manage a listed species that consumes valuable fisheries resources?
Decision context

Alternatives:
- Otters at K
- No otters

Better data:
Urchin life history from
- Literature
- Targeted study

Higher trophic resolution:
- Functional groups
- Individual species

Otter Management

Otter abundance

Invert abundance

Kelp abundance

Ecosystem structure

Resource distribution

Habitat Suitability

Community distribution

Governance

Otters attract tourists

Tourism

Commercial fishing

Economic benefit

Community health

Well-being

Subsistence

Productivity

Resilience
Model response to more information

- Better Data
- Higher trophic resolution
- Reference

![Graph showing living biomass with system states and model response to more information](image)
Evaluating sufficiency

• Technical uncertainty can be quantified
 – Value of Information approach

• Contextual uncertainty reflects belief
 – Fundamental assumptions explicit
 – Consensus based
 – Bayesian Belief Network
 – Weight of Evidence

• Sufficiency needs to combine contextual and technical certainty
Conclusions

• Need to be better at articulating model assumptions & uncertainties

• Ecosystem models can be assessed for sufficiency in specific decision contexts

• PICES Open Science Meeting Workshop (April 2014): Bridging the divide between models and decision-making: The role of uncertainty in the uptake of forecasts by decision makers

ejgregr@gmail.com