Stock-recruitment and population variability in a changing, uncertain world

Louis W. Botsford¹, J. Wilson White², Alan Hastings³, Lauren Yamane¹, Flora Cordoleani¹, Patrick Kilduff¹ and Allison Dedrick

¹Department of Wildlife, Fish, and Conservation Biology, UC Davis
²Department of Biology and Marine Biology, UNC Wilmington
³Department of Environmental Science and Policy, UC Davis

U.S. GLOBEC Synthesis: Comparative Analysis of Salmon and Cod
Cohort Resonance

- Brief historical introduction to CR
- How stock/recruitment affects CR
- Relationship between CR and other analyses of cycles and variability
- Recent results by our group
Coastal cod from the Skagerrak

Journal Animal Ecology 73: 1157-1167
Fishing intensifies the effects of CR

- Fishing increases peaks in spectral sensitivity due to CR
- Fishing increases overall variance due to environmental variability

Worden, et al. 2010
Effect of fishing on Cohort Resonance

Spawning age structure is increasingly truncated with increased fishing

LEP = Lifetime Egg Production declines with fishing (FLEP = fraction)
Effect of fishing on equilibrium recruitment (e.g., coho salmon)

\[\text{Slope} = \frac{1}{\text{Lifetime Egg Production}} = \frac{1}{\text{LEP}} = \frac{1}{\text{survival(a) \cdot maturity(a) \cdot fecundity(a)}} \]

Sissenwine & Sheperd (1987)
Effect of fishing on sensitivity of variability in recruitment

Increases peak in sensitivity at $1/T$, and at low frequency, and overall sensitivity.

Sensitivity of Variability about equilibrium

Worden, et al. (2010)

e.g., coho salmon with variable growth rate
Effect of Cohort Resonance on Total Variance

Recruitment from egg-recruit relationship

Recruitment with random larval survival

Egg production

Coho salmon

\log_2 Pacific Hake

Pacific Ocean Perch

Catch

No Fishing

Collapse
How Stock/Recruitment affects Cohort Resonance

I. Slope of Egg-Recruit function at equilibrium “amplifies” variability.
II. Shape of Spawning Age Distribution “focuses” lagged signal.

Both increase with fishing
Stock-Recruitment and Cohort Resonance with fishing

- Peak near $1/T$: variability in egg production amplified by slope of egg-recruit function at the equilibrium, which increases with fishing.
- Peak at low frequencies: Less density dependence, with increasing fishing. (wandering behavior of neutrally stable system).
Differences between Cohort Resonance and period 2T cycles (e.g., Dungeness crab and G. Kruse’s talk)

- Cohort resonance - compensatory part of the egg-recruit function,
- 2T cycles - over-compensatory part of function (if it exists)
- Cohort resonance - population stable about equilibrium,
- 2T cycles - population unstable about equilibrium
- Cohort resonance results from environmental variability driving stable modes of behavior
- In cohort resonance population may satisfy conditions but not show cohort resonance behavior; not the case with unstable 2T cycles.
- Difference between CR and other analyses of increasing variability with fishing (e.g., Anderson, et al. 2006, Shelton and Mangel, 2011, overcompensatory and unstable)
Recent Results
Sockeye salmon – Fraser River and Bristol Bay

• An extreme form of Cohort Resonance explains the cohort dominant cycles.
• Cohort dominant cycles – one year of high spawning abundance followed by 3 small ones (Fraser R.) or 4 small ones (Bristol Bay).
Bristol Bay sockeye (cycles rare, period 5)
Extreme cases
Test causes of high dominance and cyclicity

- Population persistence
- Variability in survival
- Variability in growth
- Spread in spawning age distribution

Low
High
Narrow

White, et al., in press, Ecological Monographs
Salmon populations with hatcheries

• Does the addition of constant numbers of hatchery smolts reduce the variability due to cohort resonance?
• Intuitive expectation: adding a constant reduces the Coefficient of Variation (σ/m)
• Actually very little effect on CV
Chinook salmon with hatchery supplementation

Yamane, et al. ms
Spectral sensitivity of marine birds

• Many marine birds nest on islands so that reproduction depends on variable productivity.
• We examined frequency response of a typical marine bird, Brandt’s cormorant, nesting on Farallon Islands.
• Of interest because of recent non-stationary changes in dependence of two species on environmental forcing.
Variability in reproduction of Brandt’s cormorant (—) and Cassin’s auklet (—)

Schmidt, Botsford, Eadie, Bradley, Di Lorenzo, and Jahnecke, MEPS (soon)
Spectral sensitivity of Brandt’s cormorant (early maturation, longevity 20y, $7<T<10$, weak density dependence).

Schmidt, et al. (thesis, ms)
Future change in frequency of ENSO

• Seen in the past (e.g., Cobb, et al., 2003)
• Predicted by GCMs in the future (e.g., Timmerman, et al., 2003)
• How will that effect variability in Brandt’s cormorant?
Doubled and halved frequency of ENSO

Slower MEI Faster

Greatest variance Least variance
Summary
Cohort Resonance

• Greater sensitivity of populations to low frequencies and generational frequencies
• Sensitivity and overall variance increase with fishing
• Characteristic of populations stable about equilibrium, on compensatory part of Stock Recruitment curve
• Differs from period 2T cycles and other explanations of variability increasing with fishing
• Provides an explanation for cycles in sockeye.
• Just as strong in populations with hatcheries
• Specific spectral sensitivity in marine birds
• In birds, slower ENSO frequency increases variance, and vice versa
THANKS!

A new Coastal Marine Science Institute

At the Ag School, UC Davis