Regionalizing seabirds as indicators of forage fish in Alaska

Sarah Ann Thompson, William J. Sydeman, Heather Renner, and John F. Piatt
Seabirds

• Conspicuous, highly mobile
• Monitored at sea and in colonies
Seabirds

• Conspicuous, highly mobile
• Monitored at sea and in colonies
• Indicators
 • population parameters track environmental variability and forage fish abundance
Seabird Parameters

• Reproductive/breeding success
 • = productivity
 • easily measured
 • relates well with prey abundance
Seabird Parameters

• Reproductive/breeding success
 • = productivity
 • easily measured
 • relates well with prey abundance
• Phenology (timing) of breeding
 • sensitive indicator of seasonal timing of local prey abundance
 • mean hatching date
Seabird Success Global Analysis

Cury et al. 2011 Science
Research Question

Can sites or taxa be combined to produce regional indicators in Alaska?
Research Question

Can sites or taxa be combined to produce regional indicators in Alaska?

- 4 piscivorous species
Research Question

Can sites or taxa be combined to produce regional indicators in Alaska?

• 4 piscivorous species
• 2 response variables
 • productivity and phenology
Research Question

Can sites or taxa be combined to produce regional indicators in Alaska?

- 4 piscivorous species
- 2 response variables
 - productivity and phenology
- 14 sites
Research Question

Can sites or taxa be combined to produce regional indicators in Alaska?

- 4 piscivorous species
- 2 response variables
 - productivity and phenology
- 14 sites
- principal component analysis (PCA)
Seabird Study Species

Diving birds: *Uria*

Common Murre
COMU

Thick-billed Murre
TBMU
Seabird Study Species

Surface feeders: *Rissa*

Black-legged Kittiwake
BLKI

Red-legged Kittiwake
RLKI
Seabird Colony Sampling Domain

Bering Sea

Gulf of Alaska

Alaska

Murres = 80 km
Kittiwakes = 50 km
Data Selection

Species-sites for each response
• not all species at each site
Data Selection

Species-sites for each response
- not all species at each site
- not all sites sampled each year
Data Selection

Species-sites for each response
• not all species at each site
• not all sites sampled each year

1. select the most complete species-site time series
Data Selection

Species-sites for each response
• not all species at each site
• not all sites sampled each year

1. select the most complete species-site time series
2. truncate time series
Data Selection

Species-sites for each response
• not all species at each site
• not all sites sampled each year

1. select the most complete species-site time series
2. truncate time series
3. fill in missing values
Selected Seabird Colonies

- Cape Lisburne (productivity only)
- Bluff (phenology only)
- Cape Peirce
- St. Paul
- St. George
- Buldir

Productivity: 1989-2012
Phenology: 1989-2008
Selected Seabird Colonies

Cape Lisburne (productivity only)
Bluff (phenology only)
Cape Peirce
St. Paul
St. George
Buldir

Productivity: 1989-2012
Phenology: 1989-2008
Multiple Imputation

• Produces values for missing data points by estimation
Multiple Imputation

• Produces values for missing data points by estimation
 • 5% productivity data (10% phenology)
Multiple Imputation

• Produces values for missing data points by estimation
 • 5% productivity data (10% phenology)
 • maximum 5 years/species-site, maximum 3 consecutive years
Multiple Imputation

• Produces values for missing data points by estimation
 • 5% productivity data (10% phenology)
 • maximum 5 years/species-site, maximum 3 consecutive years
• Generated 10 imputations
Multiple Imputation

- Produces values for missing data points by estimation
 - 5% productivity data (10% phenology)
 - maximum 5 years/species-site, maximum 3 consecutive years
- Generated 10 imputations
- Averaged the 10 imputed values, used this average for the missing data point
 = full data matrix
Research Question

Can sites or taxa be combined to produce regional indicators in Alaska?

→ Do they co-vary?
Species-site covariation

Murres

Year

Standardized Breeding Success
-3
-2
-1
0
1
2

COMU St. Paul
COMU St. George
COMU C. Peirce
COMU Buldir
TBMU St. Paul
TBMU St. George
TBMU Buldir
Median

UCSC Natural Reserves
Research Question

Can sites or taxa be combined to produce regional indicators in Alaska?

→ Do they co-vary?
 • Spearman cross-correlation
Productivity Cross-correlation

<table>
<thead>
<tr>
<th></th>
<th>COMU</th>
<th>TBMU</th>
<th>BLKI</th>
<th>RLKI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>St. Paul</td>
<td>St. George</td>
<td>Peirce</td>
<td>Buldir</td>
</tr>
<tr>
<td>COMU</td>
<td>St. George</td>
<td>Purple</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peirce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buldir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBMU</td>
<td>St. Paul</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. George</td>
<td>Purple</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buldir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLKI</td>
<td>St. Paul</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. George</td>
<td>Purple</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peirce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buldir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLKI</td>
<td>St. Paul</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. George</td>
<td>Purple</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buldir</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance: $p < 0.1$; 97% correlations +
Research Question

Can sites or taxa be combined to produce regional indicators in Alaska?

→ Do they co-vary?

 Yes. Proceed with PCA
Principal Component Analysis

All species Productivity

Principal Component

Year

Principal Component

Component	Eigenvalue	Proportion	Cumulative
PC1 | 4.38 | 0.29 | 0.29
PC2 | 3.16 | 0.21 | 0.50

Variable	PC1	PC2
COMU St. Paul | 0.007 | 0.441
COMU St. George | 0.061 | 0.431
COMU C. Peirce | 0.216 | 0.328
COMU Buldir | -0.069 | 0.107
TBMU St. Paul | -0.075 | 0.452
TBMU St. George | 0.105 | 0.292
TBMU Buldir | 0.071 | 0.319
BLKI St. Paul | 0.415 | 0.021
BLKI St. George | 0.419 | 0.015
BLKI C. Peirce | 0.294 | 0.115
BLKI Buldir | 0.263 | -0.193
BLKI C. Lisburne | 0.157 | -0.179
RLKI St. Paul | 0.392 | -0.112
RLKI St. George | 0.300 | -0.011
RLKI Buldir | 0.286 | -0.121

Little co-variation across genera
PCA Kittiwakes

Productivity

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>-4.0</td>
<td>-2.5</td>
<td>0.0</td>
<td>2.5</td>
<td>4.2</td>
<td>2.0</td>
<td>0.5</td>
<td>-2.0</td>
<td>-4.0</td>
<td>-2.5</td>
<td>0.0</td>
<td>2.5</td>
<td>4.2</td>
</tr>
<tr>
<td>PC2</td>
<td>-2.0</td>
<td>-1.5</td>
<td>0.0</td>
<td>1.5</td>
<td>2.2</td>
<td>0.5</td>
<td>-2.0</td>
<td>-1.5</td>
<td>0.0</td>
<td>1.5</td>
<td>2.2</td>
<td>0.5</td>
<td>-2.0</td>
</tr>
</tbody>
</table>

Eigenvalues and Proportions

<table>
<thead>
<tr>
<th>Component</th>
<th>Eigenvalue</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>4.14</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>PC2</td>
<td>1.40</td>
<td>0.18</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Variable Loadings

<table>
<thead>
<tr>
<th>Variable</th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLKI St. Paul</td>
<td>0.423</td>
<td>-0.231</td>
</tr>
<tr>
<td>BLKI St. George</td>
<td>0.423</td>
<td>-0.228</td>
</tr>
<tr>
<td>BLKI C. Peirce</td>
<td>0.289</td>
<td>0.114</td>
</tr>
<tr>
<td>BLKI Buldir</td>
<td>0.300</td>
<td>0.562</td>
</tr>
<tr>
<td>BLKI C. Lisburne</td>
<td>0.167</td>
<td>-0.357</td>
</tr>
<tr>
<td>RLKI St. Paul</td>
<td>0.419</td>
<td>-0.088</td>
</tr>
<tr>
<td>RLKI St. George</td>
<td>0.403</td>
<td>-0.261</td>
</tr>
<tr>
<td>RLKI Buldir</td>
<td>0.322</td>
<td>0.602</td>
</tr>
</tbody>
</table>
PCA Kittiwakes

Productivity

First Principal Component

Year

Component	Eigenvalue	Proportion	Cumulative
PC1 | 4.14 | 0.52 | 0.52
PC2 | 1.40 | 0.18 | 0.69

Variable	PC1	PC2
BLKI St. Paul | 0.423 | -0.231
BLKI St. George | 0.423 | -0.228
BLKI C. Peirce | 0.289 | 0.114
BLKI Buldir | 0.300 | 0.562
BLKI C. Lisburne | 0.167 | -0.357
RLKI St. Paul | 0.419 | -0.088
RLKI St. George | 0.403 | -0.261
RLKI Buldir | 0.322 | 0.602
PCA Kittiwakes

Productivity

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1 All Species</td>
<td></td>
</tr>
<tr>
<td>PC1 Kittiwakes</td>
<td></td>
</tr>
</tbody>
</table>

First Principal Component

- PC1 All Species
- PC1 Kittiwakes

Component Table

<table>
<thead>
<tr>
<th>Component</th>
<th>Eigenvalue</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>4.14</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>PC2</td>
<td>1.40</td>
<td>0.18</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Variable Table

<table>
<thead>
<tr>
<th>Variable</th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLKI St. Paul</td>
<td>0.423</td>
<td>-0.231</td>
</tr>
<tr>
<td>BLKI St. George</td>
<td>0.423</td>
<td>-0.228</td>
</tr>
<tr>
<td>BLKI C. Peirce</td>
<td>0.289</td>
<td>0.114</td>
</tr>
<tr>
<td>BLKI Buldir</td>
<td>0.300</td>
<td>0.562</td>
</tr>
<tr>
<td>BLKI C. Lisburne</td>
<td>0.167</td>
<td>-0.357</td>
</tr>
<tr>
<td>RLLI St. Paul</td>
<td>0.419</td>
<td>-0.088</td>
</tr>
<tr>
<td>RLLI St. George</td>
<td>0.403</td>
<td>-0.261</td>
</tr>
<tr>
<td>RLLI Buldir</td>
<td>0.322</td>
<td>0.602</td>
</tr>
</tbody>
</table>
PCA Murres

Productivity

<table>
<thead>
<tr>
<th>Component</th>
<th>Eigenvalue</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>2.98</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>PC2</td>
<td>1.15</td>
<td>0.16</td>
<td>0.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMU St. Paul</td>
<td>0.461</td>
<td>-0.271</td>
</tr>
<tr>
<td>COMU St. George</td>
<td>0.450</td>
<td>0.395</td>
</tr>
<tr>
<td>COMU C. Peirce</td>
<td>0.341</td>
<td>0.000</td>
</tr>
<tr>
<td>COMU Buldir</td>
<td>0.099</td>
<td>0.295</td>
</tr>
<tr>
<td>TBMU St. Paul</td>
<td>0.448</td>
<td>-0.345</td>
</tr>
<tr>
<td>TBMU St. George</td>
<td>0.347</td>
<td>0.636</td>
</tr>
<tr>
<td>TBMU Buldir</td>
<td>0.371</td>
<td>-0.400</td>
</tr>
</tbody>
</table>

Year

First Principal Component

-6 -4 -2 0 2 4

PC2 All Species

PC1 Murres

UCSC Natural Reserves
PCA Murres

Productivity

First Principal Component

Year

Component	Eigenvalue	Proportion	Cumulative
PC1 | 2.98 | 0.43 | 0.43
PC2 | 1.15 | 0.16 | 0.59

Variable	PC1	PC2
COMU St. Paul | 0.461 | -0.271
COMU St. George | 0.450 | 0.395
COMU C. Peirce | 0.341 | 0.000
COMU Buldir | 0.099 | 0.295
TBMU St. Paul | 0.448 | -0.345
TBMU St. George | 0.347 | 0.636
TBMU Buldir | 0.371 | -0.400

UCSC Natural Reserves
PCA Murres

Productivity

Year
First Principal Component
-6 -4 -2 0 2 4
PC2 All Species
PC1 Murres

Component	Eigenvalue	Proportion	Cumulative
PC1 | 2.98 | 0.43 | 0.43
PC2 | 1.15 | 0.16 | 0.59

Variable	PC1	PC2
COMU St. Paul | 0.461 | -0.271
COMU St. George | 0.450 | 0.395
COMU C. Peirce | 0.341 | 0.000
COMU Buldir | 0.099 | 0.295
TBMU St. Paul | 0.448 | -0.345
TBMU St. George | 0.347 | 0.636
TBMU Buldir | 0.371 | -0.400

UCSC Natural Reserves
Seabird Interannual Variability

Loess Sampling Proportion = 0.3

Murres
Kittiwakes
Seabird Interannual Variability

Loess Sampling Proportion = 0.3

First Principal Component

Year

Murres
Kittiwakes
Seabird Interannual Variability

Loess Sampling Proportion = 0.3

Year
First Principal Component
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
Murres
Kittiwakes
May be due to differing foraging ecology/prey base
Summary

- Seabird breeding success from multiple sites can be combined using PCA to regionalize
Summary

• Seabird breeding success from multiple sites can be combined using PCA to regionalize
 • Good representation of Eastern Bering Sea
Summary

- Seabird breeding success from multiple sites can be combined using PCA to regionalize
 - Good representation of Eastern Bering Sea
 - Across species but not across genera
Summary

- Seabird breeding success from multiple sites can be combined using PCA to regionalize
 - Good representation of Eastern Bering Sea
 - Across species but not across genera
- Temporal patterns in productivity may be explained by prey availability and environmental variability
Summary

• Seabird breeding success from multiple sites can be combined using PCA to regionalize
 • Good representation of Eastern Bering Sea
 • Across species but not across genera
• Temporal patterns in productivity may be explained by prey availability and environmental variability
• Murres (divers) and kittiwakes (surface) have differing foraging ecology and diet
Summary

- Seabird breeding success from multiple sites can be combined using PCA to regionalize
 - Good representation of Eastern Bering Sea
 - Across species but not across genera
- Temporal patterns in productivity may be explained by prey availability and environmental variability
- Murres (divers) and kittiwakes (surface) have differing foraging ecology and diet
 = indicate differences in forage fish communities by reverse inference
Thank you!

North Pacific Research Board
Alaska Maritime National Wildlife Refuge staff
Mike Litzow
Marcel Losekoot
Spencer Wood
Jarrod Santora